李良志 讲师

土地工程学院

头像

学位: 博士

毕业院校: 长安大学

邮件: liliangzhi@chd.edu.cn

电话:

出生年月: 1993-03-29

办公地点: 长安大学雁塔校区

个人资料

  • 学院: 土地工程学院
  • 性别:
  • 出生年月: 1993-03-29
  • 职称: 讲师
  • 学位: 博士
  • 学历: 博士研究生
  • 毕业院校: 长安大学
  • 联系电话:
  • 电子邮箱: liliangzhi@chd.edu.cn
  • 通讯地址: 陕西省西安市雁塔区育才路长安大学雁塔校区
  • 邮编: 71106
  • 传真:
  • 办公地址: 长安大学雁塔校区
  • 教育经历:

个人简介

李良志,男,19933月,安徽淮北人,共青团员。博士,长安大学土地工程学院讲师。研究方向:遥感信息提取及应用,大模型人工智能研究。

电子邮箱liliangzhi@chd.edu.cn

 

工作经历:

          2023.08 - 至今,长安大学土地工程学院,讲师

相关业绩:

          先后主持并参与国家自然科学基金、教育部联合基金、国家重大专项和陕西省重点研发等多项科研项目;

          在国际知名刊物发表SCI论文30余篇;

          担任IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Geoscience and Remote Sensing等顶级学术期刊审稿人;

          指导本科生和研究生在遥感信息提取和大模型人工智能领域进行研究。


社会职务

研究领域

多模态遥感影像匹配

遥感影像信息提取(分类、识别、检测)

大模型人工智能


开授课程

科研项目

主持项目:

1. 国家自然科学青年基金:无显著性特征依赖的遥感影像语义映射匹配方法研究

参与项目:

1. 国家自然科学基金面上: 基于多源异构时空数据融合的黄土区滑坡智能识别研究

2. 教育部联合基金: 面向态势智能感知的海上目标行为识别与预警技术

3. 国家重大专项: 高分航空载荷地质体识别和土地沙质荒漠化调查关键技术研究



论文

1.        Li, Liangzhi, L. Han, M. Ding, H. Cao, and H. Hu, “A deep learning semantic template matching framework for remote sensing image registration,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 181, pp. 205–217, 2021.(SCI,中科院 1 TOPJCR Q1) 

2.        Li, Liangzhi, L. Han, M. Ding, and H. Cao, “Multimodal image fusion framework for end-to-end remote sensing image registration,” IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1–14, 2023.(SCI,中科院 1 TOPJCR Q1)

3.        Li, Liangzhi, L. Han, M. Liu, et al., “Sar-optical image matching with semantic position probability distribution,” IEEE Transactions on Geoscience and Remote Sensing, vol. DOI: 10.1109/TGRS.2023.3330856, 2023.(SCI,中科院 1 TOPJCR Q1)

4.        Li, Liangzhi, and L. Han, “Cross-modal feature description for remote sensing image matching,” International Journal of Applied Earth Observation and Geoinformation, vol. 112, p. 102964, 2022.( SCI,中科院 1 TOPJCR Q1)

5.        Li, Liangzhi, L. Han, K. Gao, H. He, L. Wang, and J. Li, “Coarse-to-fine matching via cross fusion of satellite images,” International Journal of Applied Earth Observation and Geoinformation, vol. 125, p. 103574, 2023.(SCI,中科院 1 TOPJCR Q1)

6.        Li, Liangzhi, L. Han, M. Ding, Z. Liu, and H. Cao, “Remote sensing image registration based on deep learning regression model,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2020.(SCI,中科院 2区,JCR Q1)

7.        Li, Liangzhi, L. Han, and Y. Ye, “Self-supervised keypoint detection and cross-fusion matching networks for multimodal remote sensing image registration,” Remote Sensing, vol. 14, no. 15, p. 3599, 2022.(SCI,中科院 2区,JCR Q1)

8.        Li, Liangzhi, L. Han, H. Cao, and H. Hu, “Joint self-attention for remote sensing image matching,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.(SCI,中科院 2区,JCR Q1)

9.        Li, Liangzhi, L. Han, H. Hu, Z. Liu, and H. Cao, “Standardized object-based dual CNNS for very high-resolution remote sensing image classification and standardization combination effect analysis,” International Journal of Remote Sensing, vol. 41, no. 17, pp. 6635–6663, 2020.(SCI,中科院 3区,JCR Q1)

10.    Li, Liangzhi, L. Han, Q. Miao, Y. Zhang, and Y. Jing, “Superpixel-based long-range dependent network for high-resolution remote-sensing image classification,” Land, vol. 11, no. 11, p. 2028, 2022.(SCI,中科院 2区,JCR Q2)

11.    Li, Liangzhi, L. Han, H. Cao, and M. Liu, “A self-supervised keypoint detection network for multimodal remote sensing images,” International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2022.(EIISPRS国际遥感顶会)

12.    M. Liu, G. Zhou, L. Ma, Li, Liangzhi*, and Q. Mei, “Sifnet: A self-attention interaction fusion network for multisource satellite imagery template matching,” International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103247, 2023.(SCI,中科院 1 TOPJCR Q1)

13.    Yang, Nannan, Li, Liangzhi*, et al., “Retrieving heavy metal concentrations in urban soil using satellite hyperspectral imagery,” International Journal of Applied Earth Observation and Geoinformation, vol. 132, pp. 104079, 2024.(SCI,中科院 1区,JCR Q1)

14.    Zhang, X., Li, Liangzhi*, and L. Han, “A cross-spatial network based on efficient multi-scale attention for landslide recognition,” Landslides, pp. 1–13, 2024.(SCI,中科院 2区,JCR Q2)


科技成果

荣誉奖励

中科院一区TOP期刊 International Journal of Applied Earth Observation and Geoinformation 最佳论文奖


工作经历

20248月至今,长安大学土地工程学院讲师