潘应久 讲师

汽车学院

头像

学位: 工学博士

毕业院校: 东南大学

邮件: panyingjiu@chd.edu.cn

电话:

出生年月:

办公地点: 长安大学渭水校区汽车学院

个人资料

  • 学院: 汽车学院
  • 性别:
  • 出生年月:
  • 职称: 讲师
  • 学位: 工学博士
  • 学历: 博士研究生
  • 毕业院校: 东南大学
  • 联系电话:
  • 电子邮箱: panyingjiu@chd.edu.cn
  • 通讯地址: 陕西省西安市未央区长安大学渭水校区汽车学院
  • 邮编: 710064
  • 传真:
  • 办公地址: 长安大学渭水校区汽车学院
  • 教育经历:

    2017.11-2019.11     普渡大学     土木工程系 UNMI交通实验室    联合培养博士

    2016.09-2020.06     东南大学     交通学院  交通运输工程专业   工学博士

    2013.09-2016.06     长安大学     公路学院  交通运输规划与管理专业   工学硕士

    2009.09-2013.06     长安大学     电控学院  自动化(交通信息与控制)专业   工学学士




个人简介

潘应久,男,1990年生,山东章丘人,东南大学与美国普渡大学(Purdue University)联合培养博士,现为长安大学汽车学院智能车辆工程系副主任,硕士研究生导师。

研究方向:

(1)智能网联汽车生态驾驶优化控制策略

(2)自动驾驶车辆行为决策与优化

(3)电动汽车能耗特性分析和电池健康监测

(4)交通与汽车大数据数据分析

(5)交通安全与危险驾驶行为判别

研究成果

在《Transportation Research Part C: Emerging Technologies》《Energy》《Journal of Cleaner Production》《Journal of Transport Geography》《Transportation Research Record》《Journal of Intelligent Transportation Systems》《Science of The Total Environment》《Atmospheric Pollution Research》《Journal of Advanced Transportation》《东南大学学报(自然科学版)》《长安大学学报(自然科学版)》等国内外期刊及TRB国际会议发表学术论文10余篇,ESI高被引论文1篇,申请并公开国家发明专利3项。


社会职务

SCI期刊《Sustainable Energy & Fuels》审稿人;

SCI期刊《IEEE Access》审稿人;

SCI期刊《Advances in Mechanical Engineering》审稿人;

SCI期刊《Transportation Research Record》审稿人;

国际会议 Transportation Research BoardTRB)审稿人。


研究领域

主要研究方向:

(1)智能网联汽车生态驾驶优化控制策略

(2)自动驾驶车辆行为决策与优化

(3)电动汽车能耗特性分析和电池健康监测

(4)交通与汽车大数据数据分析

(5)交通安全与危险驾驶行为判别


开授课程

1、《汽车大数据处理技术》

2、《道路交通安全设施》

3、《先进辅助驾驶系统》(外语)

4、《汽车运输智能化与信息化》

5、《交通安全工程》

6、《驾驶行为与生态驾驶》(外语)

7、《工程伦理》(汽车)

科研项目

(一)国家级项目:

  (1)国家自然科学基金青年项目《基于纵横向交通扰动协同规避的智能电动汽车生态驾驶优化方法》,2025-2027,主持,在研

  (2)国家自然科学基金面上项目《基于信任的车辆安全预警多尺度干预绩效影响机理与协同优化方法》,2024-2027,参与,在研

  (3)参与国家自然科学基金面上项目《基于感知冲突与姿态不稳定理论耦合的自动驾驶车辆乘员晕动评价与改善研究》,2023-2026,参与,在研

  (4)国家重点研发计划项目《道路运输网运行风险主动防控关键技术及应用》,2020-2022,参与,结题


(二)省部级项目:

  (1)陕西省自然科学基础研究计划青年基金项目1项,主持在研,2023-2024

  (2)主持江苏省研究生科研创新计划项目1项,主持已结题,2017-2019


(三)厅局级级项目:

   (1)《沂南县“十四五”综合交通发展规划项目》,主持在研,2021-2023

   (2)《插电混合动力汽车课题研究暨咨询服务合作协议项目》,主持在研,2023-2024

   (3)《基于机器视觉与LRAD定向声波的隧道安全管控关键技术研究与应用》,主持在研,2023-2024


论文

[1].Pan, Y. Fang, W., Zhang, W. Development of an energy consumption prediction model for battery electric vehicles in real-world driving: a combined approach of short-trip segment division and deep learning. Journal of Cleaner Production, 2023, 400, 136742.

[2]. Pan, Y. Fang, W., Ge, Z., Li, C., Wang C., and Guo B. A hybrid on-line approach for predicting the energy consumption of electric buses based on vehicle dynamics and system identification. Energy, 2024, 290: 130205.

[3]. Pan, Y., Zhang, W., Niu, S. Emission modeling for new-energy buses in real-world driving with a deep learning-based approach. Atmospheric Pollution Research, Vol. 12 (10) 2021, 101195.

[4]. Pan, Y., S. Chen, S. Niu, Y. Ma, and K. Tang. Investigating the impacts of built environment on traffic states incorporating spatial heterogeneity. Journal of Transport Geography, 83C, 2020, 102663.

[5]. Pan, Y., Qiao, F., Tang, K., Chen, S., and Ukkusuri, S. V. Understanding and estimating the carbon dioxide emissions for urban buses at different road locations: A comparison between new-energy buses and conventional diesel buses. Science of The Total Environment, 703, 2020, 135533.

[6]. Pan, Y., S. Chen, T. Li, S. Niu, and K. Tang. Exploring spatial variation of the bus stop influence zone with multi-source data: A case study in Zhenjiang, China. Journal of Transport Geography, Vol. 76, 2019, pp. 166–177.

[7]. Pan, Y., S. Chen, F. Qiao, S. V. Ukkusuri, and K. Tang. Estimation of real-driving emissions for buses fueled with liquefied natural gas based on gradient boosted regression trees. Science of The Total Environment, Vol. 660, 2019, pp. 741–750.

[8]. Pan, Y., S. Chen, F. Qiao, B. Zhang, and S. Li. Characteristics analysis and modeling of emissions for bus with liquefied natural gas fuel system in real world driving, Transportation Research Record: Journal of the Transportation Research Board2018, Vol. 2672, 46–56.

[9].潘应久,陈淑燕.改进的大型场馆看台区行人疏散时间模型[J].东南大学学报(自然科学版)2017,47(3):613-618.

[10]. Pan, Y., S. Chen, F. Qiao, B. Zhang, and S. Li. Characteristics analysis and modeling of emissions for LNG bus in real world driving. Transportation Research Board 97th Annual Meeting2018

[11]. Pan, Y., F. Qiao, K. Tang, S. Chen, and S. V. Ukkusuri. Carbon dioxide emissions estimation for urban buses at different road locations: A comparison between new-energy buses and conventional diesel buses. Transportation Research Board 99th Annual Meeting2020

[12]. Li, Y., Zhang, S., Pan, Y.(通讯作者), Zhou, B., & Peng, Y. (2023). Exploring the Stability and Capacity Characteristics of Mixed Traffic Flow with Autonomous and Human‐Driven Vehicles considering Aggressive Driving. Journal of Advanced Transportation, 2023(1), 2578690.

[13]. Li, Y., Zhang, W., Zhang, S., Pan, Y., Zhou, B., Jiao, S., & Wang, J. An improved eco-driving strategy for mixed platoons of autonomous and human-driven vehicles. Physica A: Statistical Mechanics and its Applications, 641, 129733.

[14]. 李运;张生瑞;周备;潘应久;白云. 基于车辆轨迹数据的混合车队生态驾驶策略. 长安大学学报(自然科学版),2024(已录用)

[15]. Y. Ma, Tang, K., S. Chen, Khattak, A. J., and Pan, Y. On-line Aggressive Driving Identification Based on In-Vehicle Kinematic Parameters under Naturalistic Driving Conditions. Transportation Research Part C: Emerging Technologies, 2020, Vol. 114, 554–71.

[16]. Tang, K., Chen, S. and Khattak, A. J., and Pan, Y. Deep architecture for citywide travel time estimation incorporating contextual information. Journal of Intelligent Transportation Systems, 2019.

[17]. Tang, K., Ma, Y., Chen, S., Khattak, A. J., and Pan, Y. On-line Aggressive Driving Identification Based on In-Vehicle Kinematic Parameters under Naturalistic Driving Conditions. Transportation Research Board 98th Annual Meeting2019.

[18]. Tang, K., Chen, S., Ma, Y., Pan, Y., and Khattak, A. J. Spatial-temporal Traffic State Collaborative Forecast in Urban Road Network Based on Dynamic Factor Model. Transportation Research Board 99th Annual Meeting2020.

[19]. Ma, Y., Zhu, Q., Meng, H., Pan, Y., and Chen, S. Reckless Driving Behavior Recognition Using Facial Expression Data from a Naturalistic Driving Study. Transportation Research Board 99th Annual Meeting, 2020.

[20]. Ma, Y., Yan, Q., Dong, X., Zhang, C., and Pan, Y. Exploring the Impact of Sleep Patterns on Driving Behaviors of Heavy-duty Truck Drivers. Transportation Research Board 99th Annual Meeting2020.




科技成果

荣誉奖励

2022年度,长安大学优秀班主任


工作经历

2020年7月 至今   长安大学汽车学院/讲师/硕士生导师

2020年10月—2023年11月 长安大学汽车学院 博士后