Zhengsupei Professor

Mathematics

头像

Degree: PhD

Graduate School: Northwestern Polytenical University

Email: zsp@chd.edu.cn

Tel: 13572581762

BirthDate:

Office Location: Department of Mathematics on the 3rd Floor in Base Building

The personal data

  • Department: Mathematics
  • Gender: female
  • BirthDate:
  • Career: Professor
  • Degree: PhD
  • Academic Credentials: PhD
  • Graduate School: Northwestern Polytenical University
  • Tel: 13572581762
  • Email: zsp@chd.edu.cn
  • Address School: Mathematics Department, the Campus of Chang An University, Beilin District, Xi An City
  • PostCode School: 710064
  • Fax School:
  • Office Location: Department of Mathematics on the 3rd Floor in Base Building
  • Education experience:

    Sept. 2004-July 2008  Doctor degree, Applied Mathematics, Northwestern Polytechnical University (NWPU)

    Sept. 2002-July 2005  Master degree, Computational Mathematics, NWPU

    Sept. 1998-July 2002  Bachelor of Science, Mathematics education, Xin Yang Normal University

Resume

Zheng Su-pei,  was Yuzhou city, Henan province. I have been teaching and research work in the fields of computational fluid dynamics and computational mathematics, who have obtained certain achievement in such aspects as the numerical methods for solving the differential equation and the computational fluid dynamics, have published nearly 20 academic papers at different academic journals and academic conferences, have presided over one national natural science fund, two lateral projects, and have participated in several national natural science fund projects as the main participants.

Social position

None

Research

Numerical Methods for the Differential Equations, Computational Fluid Dynamics etc.

Open Course

No.

Time

Course   Name

Duration

Students

1

2012.09-2013.01

2013.09-2014.01

2014.09-2015.01

2015.09-2016.01

Numerical Analysis

90

Undergraduate Students

2

2012.03-2012.06

2013.03-2013.06

2014.03-2014.06

Numerical Methods ofDifferential Equations

72

Undergraduate Students

3

2015.09-2015.12

Theory of Matrices

40

Graduate Students

4

2012.03-2012.05

Numerical Methods

30

Undergraduate Students

5

2013.09-2013.12

Advanced Mathematics

72

Undergraduate Students

6

2015.03-2015.06

2016.03-2016.06

Probability and Statistics

50

Undergraduate Students

7

2017.09-2017.11

Numerical Analysis

Teaching in English

40

Abroad Graduate Students

  

2017.09-2017.10

Numerical Methods

Bilingualism

30

Undergraduate

Research project

No.

Project No.

Project Source

Project Name

Duration

Leader

AmountTen Thousand Yuan

1
11971075NSFC

Research on the High-Order, Non-Oscillatory Entropy Stable Schemes

and on the Entropy Stable Schemes based on the Moving Mesh Method

2020.01-2023.12Zheng Supei52

2

211012140335

NSFC

Entropy Consistent Methods for Capturing the   Discontinuity

2015.01-2017.12

Zheng Supei

22

Thesis

[1] Liu JH, Zheng SP, Song XL, Xu DD.Locally-linearized physics-informed neural networks for Riemann problems of hyperbolic conservation laws. Physics of Fluids, 2024, online.

[2] Zhang CZ, Zheng SP,  Feng JH, Liu SS. Entropy stable scheme for ideal MHD equations on  adaptive unstructured meshes. Computers and Fluids, 2024, 285 :106445.SCI二区).

[3] Zhai,  M, Zheng SP, Zhang CZ, Jian MM. A new S-M limiter entropy stable scheme  based on moving mesh method for ideal MHD and SWMHD equations. Journal  of Scientific Computing, 2024, 98:68.SCI一区).

[4] Li, Q, Zheng, SP, Mei, LQ.  Three decoupled, second-order accurate, and energy stable schemes for  the conserved Allen-Cahn-type block copolymer (BCP) model. Numerical  Algorithms, 2023, 92(2):1233-1259.SCI一区)

[5] Li, Q,Cui, N,Zheng, SP,Mei, LQ. A  new Allen-Cahn type two-model phase-field crystal model for fcc  ordering and its numerical approximation. Applied Mathematics Letters,  2022, 132:108211SCI一区)

[6] Li, RP, Zheng, SP, Wang, FD, Deng, QT, Li, XB, Xiao, YZ, Song, XL.  A robust sparse Bayesian learning method for the structural damage  identification by a mixture of Gaussians. Mechanical Systems and Signal  Processing, 200:110483.SCI一区)

[7] Cheng, XH,Feng, JH,Zheng, SP, Song, XL. A  new type of finite difference WENO schemes for Hamilton-Jacobi  equations. International Journal of Modern Physics C, 2019, 30(2-3):1950020.SCI二区)

[8] Cheng, XH,Feng, JH, Zheng, SP. A fourth order WENO scheme for hyperbolic conservation laws. Advances in Applied Mathematics and Mechanics, 2020, 12(4):992-1007.SCI三区)

[9] Ren, X, Feng, JH, Zheng, SP, Cheng, XH, Li, Y.  On high-resolution entropy-consistent flux with slope limiter for  hyperbolic conservation laws. Communications on Applied Mathematics and  Computation. 2023, 5(4):1616-1643.SCI四区)

[10] Zheng SP, Ouyang J, etc. An Adaptive Method to Capture Weldline during the Injection Mold Filling. Computers and Mathematics with Applications, 2012, 64: 2860-2870.SCI二区)

[11]Zheng SP, Ouyang J, etc. Research on a Numerical Scheme for Capturing Free Front During Injection Molding. Polymer-Plastics Technology and Engineering, 2009, 481-9.SCI三区)

[12]郑素佩, 徐霞, 封建湖等. 高阶保号熵稳定格式. 数学物理学报, 2021, 41(05):1296-1310.

[13]建芒芒, 郑素佩, 封建湖等. 浅水波方程熵稳定格式的保平衡性. 数学物理学报, 2023, 43(02):491-504.

[14]郑素佩, 建芒芒, 封建湖等. 保号WENO-AO型中心迎风格式. 计算物理, 2022, 39(06): 677-686.

[15]郑素佩, 林云云, 封建湖等. 浅水波方程的黏性正则化PINN算法. 计算物理, 2023, 40(03):314-324.

[16]郭依琳, 郑素佩, 陈梦莹, . 求解二维Riemann问题的压差型自适应旋转熵稳定格式[J/OL].计算力学学报, 1-6 [2024-10-28]. http://kns.cnki.net/kcms/detail/21.1373.O3.202410 25.1548.014.html.

[17]张蕊, 郑素佩, 董安国, . 区域压缩PINN算法在双曲守恒律方程求解中的应用[J/OL].计算力学学报, 1-6 [2024-10-28]. http://kns.cnki.net/kcms/detail/21.1373.O3.2023 1212.1242.002.html.

[18]刘沙沙, 郑素佩, 张成治,. CCWENO型高阶熵稳定格式的保平衡性. 计算物理, 2024, 41(04): 453-462.

[19]靳放, 郑素佩, 封建湖, . 求解浅水波方程的并行物理信息神经网络算法. 计算力学学报, 2024, 41(02):352-358.

[20]翟梦情, 李琦, 郑素佩. 求解一维理想磁流体方程的移动网格熵稳定格式. 计算力学学报, 2023, 40(02):229-236.

[21]赵青宇, 郑素佩, 李霄. 机器学习在求解一维双曲守恒律方程中的应用. 计算力学学报, 2022, 39(02):229-236.

[22]张成治, 郑素佩, 陈雪, . 求解理想磁流体方程的四阶WENO型熵稳定格式. 应用数学和力学, 2023, 44(11):1398-1412.

[23]林云云, 郑素佩, 封建湖等. 间断问题扩散正则化的PINN反问题求解算法. 应用数学和力学, 2023, 44(01):112-122.

[24]郑素佩, 李霄, 赵青宇等. 求解二维浅水波方程的旋转混合格式. 应用数学和力学, 2022, 43(02):176-186.

[25]贾豆, 郑素佩. 求解二Euler方程的旋转通量混合格式. 应用数学和力学, 2021, 42(02): 170-179.

[26]郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法. 应用数学和力学, 2020, 41(01):42-53.

[27]王令, 郑素佩. 基于移动网格的熵稳定格式求解浅水波方程. 水动力学研究与进展(A), 2020, 35(02):188-193.

[28]陈雪, 郑素佩, 张成治, . 高效时空同步四阶熵稳定格式. 力学季刊, 2023, 44(04):967-977.

[29]郑素佩, 王苗苗, 王令. 基于WENO-Z重构的Osher-Solomon格式求解浅水波方程. 水动力学研究与进展(A), 2020, 35(01):90-99.

[30]郑素佩, 靳放, 封建湖等. 双曲型方程激波捕捉的物理信息神经网络(PINN)算法. 浙江大学学报(理学版), 2023, 50(01):56-62+82.

[31]郑素佩, 闫佳, 宋学力等. 求解大规模矛盾方程组的最小二乘支持向量机算法. 浙江大学学报(理学版), 2022, 49(04):435-442.

[32]郑素佩, 赵青宇, 封建湖. 基于WENO重构保号的四阶熵稳定格式. 浙江大学学报(理学版), 2022, 49(03):329-335.

[33]李彬彬, 郑素佩, 王令. 二维移动网格矢通量分裂法. 郑州大学学报(理学版), 2020, 52(04):96-102.

[34]李霄, 郑素佩, 王令等. 浅水波方程的旋转不变性及自适应求解. 郑州大学学报(理学版), 2023, 55(04):75-81.

[35]吕梦迪, 郑素佩, 陈芳. 五阶高分辨率熵稳定算法. 信阳师范学院学报(自然科学版), 2018, 31(02):191-196.

[36]程晓晗, 封建湖, 郑素佩. 求解对流扩散方程的低耗散中心迎风格式. 应用数学, 2017, 30(02):344-349.

[37]任璇, 封建湖, 郑素佩等. 求解双曲守恒律方程的熵相容格式. 应用力学学报, 2021, 38(02):560-565.

[38]沈亚玲, 封建湖, 郑素佩等. 一种基于新型斜率限制器的理想磁流体方程的高分辨率熵相容格式. 计算物理, 2022, 39(03):297-308.

[39]郑素佩, 封建湖.交通流LWR模型的高分辨率熵相容算法. 长安大学学报(自然科学版),2013, 33(5): 75-80. (EI索引号:20134416940676)

[40]郑素佩,封建湖,刘彩侠. 高分辨率熵相容算法在二维溃坝问题中的应用. 水动力学研究与进展 A, 2013, 28(5): 545-551.

[41]郑素佩,封建湖. 四阶高分辨率熵相容算法. 计算机应用, 2013, 33(9): 2416-2418.

[42]郑素佩,封建湖等. 二维双曲守恒律标量方程的三阶CWENO-型熵相容算法. 计算机应用, 2012, 32(10):2745-2747.

[43]郑素佩,封建湖,王文杰. 一维浅水波方程的高分辨率熵相容算法. 辽宁工程技术大学学报(自然科学版). 2013, 32(12): 1708-1712.

[44]郑素佩, 欧阳洁, 张红平, 张玲. 带有矩形嵌件薄壁型腔内熔接过程动态模拟. 化工学报, 2008, 59(1): 232~238.

[45]郑素佩, 欧阳洁, 赵智峰, 张红平. 注射充模过程的熔体前沿界面追踪及流场分析. 中国塑料, 2007, 21(5): 53~57.

[46]郑素佩, 欧阳洁. Level Set追踪等温非牛顿熔体前沿界面. 力学与实践, 2007, 29(3): 11~14.

[47]Zheng  SP, Ouyang J, Zhang L, Zhang and HP. Dynamic Simulation of Fusion  Process and Analysis of Flow Field. Journal of Reinforced Plastics and  Composites, 2007, 26(17): 1781~1792.

[48]Zhang L, Ouyang J. Zheng, SP. Multiscale analysis and numerical simulation for stability of the incompressible flow of a Maxwell fluid. Applied Mathematical Modelling, 2010, 34(3): 763-775. (Accession number: 20094512417633)

[49]杨斌鑫, 欧阳洁, 郑素佩, 赵智峰. 充模过程的Level Set两相流模拟. 化工学报, 2009, 60(11): 2729-2736EI索引

[50]张玲,欧阳洁,郑素佩,张红平. Maxwell流体不可压缩流动稳定性的多尺度分析与数值模拟.工程数学,2009, 26(3): 480-488.

[51]刘彩侠, 封建湖, 郑素佩. 求解浅水波方程的半离散中心迎风方法. 应用力学学报, 2006, 23(2): 246~249  (EI索引).

[52] Zhang HP, Ouyang J, Zhang L, Zheng SP. Multi-scale Mathematic Modeling of Non-isothermal Polymeric Flow of Fiber Suspensions. Computers & Chemical Engineering.

[53]张红平, 欧阳洁, 刘德峰, 郑素佩. 纤维悬浮聚合物熔体中纤维影响的数值模拟, 化工学报, 2007, 58(8): 2094~2102 (EI索引).

[54]张红平, 欧阳洁, 张玲, 郑素佩. 聚合物熔体双尺度模型和SIMPLER方法在收缩流中的应用. 高分子材料科学与工程, 2007, 23(4): 21~25 (EI索引)


Technological Achievements

Honor Reward

[1] Mathematical Contest in Modeling Certificate of Achievement, Advisor, Honorable Mention (2013, 2014, 2015,2016).

Work experience

Sept. 2008 till now  Mathematical Department of Chang'an University