侯兆阳 教授

理学院

头像

学位: 博士研究生

毕业院校: 湖南大学

邮件: houzy@chd.edu.cn

电话: 029-82334891

出生年月: 1980-10-16

办公地点: 长安大学本部基础大楼306

个人资料

  • 学院: 理学院
  • 性别:
  • 出生年月: 1980-10-16
  • 职称: 教授
  • 学位: 博士研究生
  • 学历: 博士
  • 毕业院校: 湖南大学
  • 联系电话: 029-82334891
  • 电子邮箱: houzy@chd.edu.cn
  • 通讯地址: 西安市南二环中段长安大学理学院
  • 邮编: 710064
  • 传真:
  • 办公地址: 长安大学本部基础大楼306
  • 教育经历:


    2005/03-2008/06 湖南大学 博士

    2003/09-2005/03 湖南大学 硕士

    1999/09-2003/06 湖南大学 学士



个人简介

侯兆阳,河南南阳人,生于198010月,中共党员,博士,教授。从事亚稳材料相变的物理机理和微观变形机制等方面的研究,先后主持了国家级、省级和校级纵向科研项目6项,累计到款经费110万元。其中,主持在研国家自然科学面上项目“纳米孪晶金属宏观力学特性和微观变形机制的缺陷结构动力学行为研究(编号:51771033,起止日期:201801—202112月)”,支持完成了国家自然科学基金青年项目过冷熔体形核初期团簇动力学行为和热力学特性的模拟研究(编号:51101022,起止日期:201201—201412月),主持在研陕西省自然科学基金面上项目(编号:2016JM5055,起止日期:201601—201712月)1项,主持完成了中央高校基本科研业务费资助项目3。参加工作以来,在著名学术刊物《Phys. Chem. Chem. Phys.》、《J. Chem. Phys.》、《J. Phys. Chem》、《J. Appl. Phys.》等已发表SCI收录学术论文50余篇。研究结果被包括Chemical Reviews (IF54.26)Nature Communications (IF: 12.19)Acta Materialia (IF: 7.77)Physical Review B (IF: 3.74)等国际一流期刊多次正面引用,研究成果获2019年陕西省高等学校科学技术奖二等奖,2020年陕西省科学技术奖二等奖。


欢迎广大力学、材料学和物理学专业学生报考硕士和博士研究生。

社会职务

陕西省物理学会理事

担任《Computational Materials Science》、《Journal of Non-crystal Solids》、《Journal of Alloy and Compounds》等十余个期刊审稿人。

研究领域

     近期,主要从事以下几个方面的研究:

     1. 新型纳米结构力学行为及变形机理

     2. 金属熔体凝固形核机理

     3. 高熵合金


开授课程

科技论文写作

大学物理

固体物理

大学物理实验

科研项目

序号

项目名称

项目性质及来源

项目经费

起止年度

排序

1

纳米孪晶金属宏观力学特性和微观变形机制的缺陷结构动力学行为研究

国家自然科学基金面上项目

58

2018/01-2021/12

1

2

纳米晶材料中孪生结构特征对其力学性能和形变机理影响的模拟研究

陕西省自然科学基金面上项目

3

2016/01-2017/12

1

3

过冷熔体形核初期团簇动力学行为和热力学特性的模拟研究

国家自然科学基金青年项目

25

2012/01-2014/12

1

4

科学学术交流: 非晶态金属微观结构特征及结构设计增韧

陕西省科协学术交流

1.5

2021/06-2021/12

1


论文

部分发表论文目录

[1].     Li C, Hou Z Y, Niu, Y, Gao Q H , Wang Z , Wang J G, Zou P F. Simulation of nucleation and evolution process of nuclei during solidification of Ti3Al alloy. 物理学报2022, 71: 016101.

[2].      Hou Z Y, Li C, Liu L X, Gao Q H, Wang J G, Liu R S, Tian Z A, Dong K J. Three-dimensional topological structures and formation processes of dislocations in Au nanowire under tension loading. Comput. Mater. Sci., 2021, 197: 110639.

[3].     Xiao Q X, Hou Z Y, Li C, Niu Y. Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study. Chin. Phys. B, 2021, 30:056101.

[4].     Hou Z Y, Xiao Q X, Wang Z, Wang J G, Liu R S, Wang C. Effect of twin boundary spacing on the deformation behaviour of Au nanowire. Physica B, 2020, 581: 411952.

[5].     Zhao X G, Chen L, Zhang X Y, Liu P, Xu C L, Hou Z Y, Wang Z, Wang F L, Wang J G, Shi G. The abnormal multiple dielectric relaxation responses of Al3+ and Nb5+ co-doped rutile TiO2 ceramics. J. Alloy. Comp. 2021, 860: 157891.

[6].     Cheng L, Niu W C, Zhao X G, Xu C L, Hou Z Y. Design and implementation of college physics teaching platform based on virtual experiment scene. Int. J. Elec. Eng., 2021, 4: 19

[7].     Zhao X G, Yang H R, Cheng L, Zhang X Y, Wang F L, Duan C B, Zhuo W, Xu C L, Hou Z Y. Mechanism of bubble sinking in vertically vibrating water. 物理学报2021, 69: 244602.

[8].     Wang F L, Wang Z, Xu C L, Zhao X G, Hou Z Y. Polarization-induced anisotropic damping in Co/[Pb (Mg1/3Nb2/3)O-3](0.7)-[PbTiO3](0.3) (011) heterostructure. Appl. Phys. Letts. 2020, 117: 132409.

[9].     Wang Z, Wang F L, Hou Z Y, Xu C L, Gao D R. Static and Dynamic Magnetic Properties of FeGa/FeNi (FeNi/FeGa) Bilayer Structures. Coating, 2020, 10: 383.

[10].  Mo. Y F, Tian Z A, Lang L Liu R S, Zhou L L, Hou Z Y, Peng P, Zhang T Y. The short-range order in liquid and A15 crystal of zirconium. J. Non-Cryst. Solids, 2019, 513: 111-119.

[11].  Liu L X, Hou Z Y, Tian Z A, Wang Z, Wang F L, Zhao X G, Liu R S. Mechanical behaviour of rapidly solidified aluminium with multiple twinned nanograins: A molecular dynamics simulation study. Comput. Mater. Sci., 2018, 156: 1-6.

[12].  Shi G J, Wang J G, Hou Z Y, Wang Z, Liu R S. Simulation study of the effect of strain rate on the mechanical properties and tensile deformation of gold nanowire. Mod. Phys. Lett. B, 2013, 27: 1350071.

[13].  Liang Y C, Xie Q, Tian Z A, Mo Y F, Zhang H T, Liu H R, Hou Z Y, Zhou L L, Peng P. Structural evolutions and hereditary characteristics of icosahedral nano-clusters formed in Mg70Zn30 alloys during rapid solidification processes. Sci. Rep, 2017, 7: 43111.

[14].  Hou Z Y, Dong K J, Tian Z A, Liu R S, Wang Z. Wang J G. Cooling rate dependence of solidification for liquid aluminium: a large-scale molecular dynamics simulation study. Phys. Chem. Chem. Phys., 2016, 18: 17461.

[15].   Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P. Crystallization characteristics in supercooled liquid zinc during isothermal relaxation: A molecular dynamics simulation studySci. Rep, 2016, 6: 31653.

[16].  Wang Z, Pan W W, Wang J G, Xu C L, Hou Z Y. The investigation of chemical interaction and energy level alignment at Bepp2/Fe65Co35 interfaceAppl. Surf. Sci., 2016, 370:169.

[17].   Mo Y F, Tian Z A, Liu R S, Hou Z Y, Zhou L L, Peng P, Zhang H T, Liang Y C. Molecular dynamics study on microstructural evolution during crystallization of rapidly supercooled zirconium melts. J. Alloys Comp., 2016, 688: 654.

[18].  Hou Z Y, Tian Z A, Dong Kejun, Yu Aibing. Atomic dynamics of grain boundaries in bulk nanocrystalline aluminium A molecular dynamics simulation study. Comput. Mater. Sci., 2015, 108: 177-182.

[19].  Hou Z Y, Tian Z A, Dong Kejun, Yu Aibing. Formation mechanism of bulk nanocrystalline aluminium by liquid quenching: A molecular dynamics simulation study. Comput. Mater. Sci., 2015, 99: 256-261.  

[20].  Mo Y F, Liu R S, Liang Y C, Zhang H T, Tian Z A, Hou Z Y, Liu H R, Zhou L L, Peng P, Gao T H. Formation and evolution of nano-clusters in a large-scale system of Cu–Zr alloy during rapid solidification process. Comput. Mater. Sci., 2015, 98: 1-9.

[21].  Mo Y F, Tian Z A, Liu R S, Hou Z Y, Wang C C. Structural evolution during crystallization of rapidly super-cooled copper melt. J. Non-Cryst. Solids, 2015, 421: 14.

[22].   Mo Y F, Liu R S, Tian Z A, Liang Y C, Zhang H T, Hou Z Y, Liu H R, Zhang A L, Zhou L L, Peng P. Non-linear effects of initial melt temperatures on microstructures and mechanical properties during quenching process of liquid Cu46Zr54 alloy. Phys. B, 2015, 465: 81.

[23].  Jiang Y Q, Peng P, Wen D D, Han S C, Hou Z Y. DFT study on the heredity-induced coalescence of icosahedral basic clusters in the rapid solidification. Comput. Mater. Sci., 2015, 99: 156.

[24].  Hou Z Y, Tian Z A, Mo Yufei, Liu R S. Local atomic structures in grain boundaries of bulk nanocrystalline aluminium: A molecular dynamics simulation study. Comput. Mater. Sci., 2014, 92: 199-205.

[25].  Hou Z Y, Liu R S, Xu X L, Shuai X M, Shu Y. Molecular dynamics simulation of relationship between local structure and dynamics during glass transition of Mg7Zn3 alloy. Trans. Nonferr. Metal. Soc. China, 2014, 24: 1086-1093.

[26].  Liang Y C, Liu R S, Mo Y F, Liu H R, Tian Z A, Zhou Q Y, Zhang H T, Zhou L L, Hou Z Y, Peng P P. Influence of icosahedral order on the second peak splitting of pair distribution function for Mg70Zn30 metallic glass. J. Alloy. Comp. 2014, 597: 269-274.

[27].   Shuai X M, Shen W D, Hou Z Y, Ke S M, Xu C L. A versatile chemical conversion synthesis of Cu2Snanotubes and the photovoltaic activities for dye-sensitized solar cell. Nanoscale Res. Lett., 2014, 9: 1.

[28].  Hou Z Y, Liu R S, Xu C L, Li X T. Dynamic mechanism of liquid-glass transition for Mg7Zn3 alloy. Mod. Phys. Lett. B, 2013, 27: 1350071.

[29].  Liu R S, Liang Y C, Liu H R, Zheng N C, Mo Y F, Hou Z Y, Zhou L L, Peng P. Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg7Zn3 alloy. Trans. Nonferr. Metal. Soc. China, 2013, 23: 1052-1060.

[30].  Hou Z Y, Liu L X, Tian Z A, Liu R S, Shu Y, Wang J G. Atomic mechanism of liquid-glass transition in Ca7Mg3 alloy.J.Phys. Chem.B, 2012, 116: 7746-7753.

[31].  Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P, Liu Q H. Microstructural evolution and martensitic transformation mechanisms during solidification processes of liquid metal PbPhil. Mag., 2012, 92: 571.

[32].   Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P, Liu Q H. Kinetic details of crystallization in supercooled liquid Pb during the isothermal relaxationPhys. B, 2012, 407: 240.

[33].   徐春龙,侯兆阳,刘让苏,CaMg金属玻璃形成过程热力学、动力学和结构特性转变机理的模拟研究,物理学报2012, 61: 348.

[34].  Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G. Short-range and medium-range order in rapidly quenched Al50Mg50 alloy. J. Non-Cryst. Solids, 2011, 357: 1430-1436.

[35].  Zhou L L, Liu R S, Tian Z A, Liu H R, Hou Z Y, Peng P, Liu Q H. Formation and evolution characteristics of bcc phase during isothermal relaxation processes of supercooled liquid and amorphous metal PbTrans. Nonferr. Metal. Soc. China, 2011, 21: 588.

[36].  Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G. Short-range and medium-range order in Ca7Mg3 metallic glass. J.Appl. Phys., 2010, 107: 083511-7.

[37].  Hou Z Y, Liu L X, Liu R S, Tian Z A, Wang J G. Kinetic details of nucleation in supercooled liquid Na: a simulation tracing study. Chem .Phys. Lett, 2010, 491: 172-176.

[38].  Hou Z Y, Liu L X, Liu R S, Tian Z A. Tracing Nucleation and growth on atomic level in amorphous sodium by molecular dynamics simulation. Chin. Phys. Lett., 2010, 27: 036101-4.

[39].  Hou Z Y, Liu L X, Liu R S. Simulation study on the evolution of thermodynamic, structural and dynamic properties during the crystallization process of liquid Na. Modelling Simul. Mater. Sci. Eng., 2009, 17: 035001-12.

[40].  侯兆阳, 刘丽霞, 刘让苏. Al-Mg合金熔体快速凝固过程中微观结构演化机理的模拟研究. 物理学报, 2009, 58: 4817-4825.

[41].  Liu F X, Liu R S, Hou Z Y, Liu H R, Tian Z A, Zhou L L. Formation mechanism of atomic cluster structures in Al–Mg alloy during rapid solidification processes. Ann. Phys, 2009, 324: 332-342.

[42].   Tian Z A, Liu R S, Peng P, Hou Z Y, Liu H R, Zheng C X, Dong K J, Yu A B. Freezing structures of free silver nanodriplets: A molecular dynamics simulation study. Phys. Lett. A, 2009, 373: 1667-1671.

[43].   Liu R S, Liu H R, Dong K J, Hou Z Y, Tian Z A, Peng P, Yu A B. Simulation study of size distributions and magic number sequences of clusters during the solidification process in liquid metal Na. J. Non-Cryst. Solids, 2009, 355: 541-547.

[44].  Tian Z A, Liu R S, Zheng C X, Liu H R, Hou Z Y, Peng P. Formation and evolution of metastable bcc phase during solidification of liquid metal Ag: A molecular dynamics simulation study. J. Phys. Chem. A, 2008, 112: 12326-12336.

[45].   Tian Z A, Liu R S, Liu H R, Zheng C X, Hou Z Y, Peng P. Molecular dynamics simulation for cooling rate dependence of solidification microstructures of silver. J. Non-Cryst. Solids. 2008, 354: 3705-3712.

[46].  Yi X H, Liu R S, Tian Z A, Hou Z Y, Li X Y, Zhou Q Y. Formation and evolution properties of clusters in liquid metal copper during rapid cooling processes. Trans. Nonferrous Met. Soc. Chin., 2008, 18: 33-39.

[47].   周丽丽, 刘让苏, 侯兆阳, 田泽安, 林艳, 刘全慧. 冷速对液态金属Pb凝固过程中微观团簇结构演变影响的模拟研究. 物理学报, 2008, 57: 3653-3660.

[48].   林艳, 刘让苏, 田泽安, 侯兆阳, 周丽丽, 余亚彬. 冷速对液态金属Zn快速凝固过程中微观结构的影响. 物理化学学报, 2008, 24: 250-256.

[49].  Hou Z Y, Liu R S, Liu H R, Tian Z A, Wang X, Zhou Q Y, Chen Z H. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium. J. Chem. Phys., 2007, 127: 174503-9.

[50].  Hou Z Y, Liu R S, Liu H R, Wang X, Tian Z A, Zhou Q Y, Chen Z H. Simulation study on the formation and evolution properties of nano-clusters in rapid solidification structures of sodium. Modelling Simul. Mater. Sci. Eng., 2007, 15: 911-922.

[51].  侯兆阳, 刘让苏, 王鑫, 田泽安, 周群益, 陈振华. 熔体初始温度对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2007, 56: 376-383.

[52].  Liu H R, Liu R S, Zhang A L, Hou Z Y, Wang X, Tian Z A. A simulation study of microstructure evolution during solidification process of liquid metal Ni.Chin. Phys. 2007, 16: 3747-3753.

[53].   侯兆阳, 刘让苏, 李琛珊, 周群益, 郑采星. 冷速对液态金属Na凝固过程中微观结构影响的模拟研究. 物理学报, 2005, 54: 5723-5729.

[54].  张海涛, 刘让苏, 侯兆阳, 张爱龙, 陈晓莹, 杜生海. 冷速对液态金属Ga凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55: 2409-2417. 

[55].   易学华, 刘让苏, 田泽安, 侯兆阳, 王鑫, 周群益. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究. 物理学报, 2006, 55: 5386-5393. 

[56].  刘让苏, 覃树萍, 侯兆阳, 陈晓莹, 刘凤翔. 液态金属In凝固过程中微观结构转变的模拟研究. 物理学报, 2004, 53: 3119-3124. 


《新工科大学物理》

《简明大学物理》

《MATLAB可视化大学物理》


科技成果

近年来,在亚稳材料研究中获得了如下主要研究成果:

1)建立了表征无序体系中各种微观结构组态的方法团簇类型指数法(CTIM,在此方法基础上揭示了液态、非晶态和晶界中,从短程序到中程序各尺度下的微观结构特征。

2CTIM的基础上建立了科学识别和跟踪团簇结构动态演化的“团簇演化跟踪技术”,在此方法基础上揭示了液态金属凝固形核初期不同原子团簇之间的竞争机制,以及原子团簇从晶胚临界晶核晶粒演化的微观动力学机理,完善了经典凝固形核理论

3)揭示了液固玻璃转变过程在结构、热力学和动力学上的特征,并从原子层次阐明了它们之间的联系,这对深入准确地理解玻璃化转变机理具有重要的理论意义

            这些研究成果对深入准确地理解液固转变的微观机理,完善凝固理论,具有重要的理论意义,并对优化凝固工艺以获得优良材料性能具有一定的实际指导作用。


荣誉奖励

2020 陕西省科学技术奖 二等奖

2019 陕西省高等学校科学技术奖 二等奖

2018 长安大学师德标兵

2017 陕西省第二届高校教师微课教学比赛  一等奖

2016 第二届全国高等学校物理基础课程青年教师讲课比赛 陕西赛区二等奖


工作经历

2016/12 - 至今,长安大学,理学院应用物理系,教授

2014/04 - 2016/12,长安大学,理学院应用物理系,副教授

2013/04 - 2014/04,澳大利亚新南威尔士大学,访问学者

2010/04 - 2013/04,长安大学,理学院应用物理系,副教授

2008/07 - 2010/12,长安大学,理学院应用物理系,讲师