王其召 教授

水利与环境学院

头像

学位: 工学博士

毕业院校: 上海交通大学

邮件: qzwang@chd.edu.cn

电话:

出生年月:

办公地点:

个人资料

  • 学院: 水利与环境学院
  • 性别:
  • 出生年月:
  • 职称: 教授
  • 学位: 工学博士
  • 学历: 博士研究生
  • 毕业院校: 上海交通大学
  • 联系电话:
  • 电子邮箱: qzwang@chd.edu.cn
  • 通讯地址: 陕西省西安市雁塔区雁塔路126号
  • 邮编: 710064
  • 传真:
  • 办公地址:
  • 教育经历:

个人简介

王其召,博士、博士生导师长安大学特聘教授、陕西省科技创新团队负责人主持国家自然科学基金、科技部重点研发计划陕西省自然科学基金重点项目中央高校基本科研业务费领军人才项目等多项研究项目Applied Catalysis B,Green Chemistry,  Science Bulletin等国际期刊发表SCI收录论文1609ESI热点论文/22ESI高被引论文2篇年度最佳论文,授权发明专利22项,并连续入选全球前2%顶尖科学家榜单;兼任国家自然科学基金委评审专家、科技部、教育部评审专家,中国感光学会光催化专业委员会委员Chinese Chemical Letters青年编委Advanced Powder Materials特邀编委,Chinese Journal of Structural Chemistry青年编委;获得明德教师奖、甘肃省教师成才奖、甘肃省自然科学三等奖(R1)、非金属科学技术二等奖(R1)、陕西省高校科技成果一等奖等多项科研与教学奖励。


社会职务

中国感光学会光催化专业委员会委员

陕西省西安市科协智库专家

环境损害鉴定专家

Advanced Powder Materials特邀编委

Chinese Chemical Letters青年编委

Frontiers in Environmental Chemistery期刊客座编委

Chinese Journal of Structural Chemistry青年编委

第二届丝绸之路能源催化与技术青年学者研讨会共同主席

丝绸之路能源催化与技术青年学者研讨会共同发起人

研究领域


研究领域和兴趣:

新能源光电催化材料(氢能、合成氨、二氧化碳资源化、光电催化、电催化)

环境催化;电池相关材料

水/大气污染控制;

资源综合利用。

招收博士后,博士生和硕士生领域(课题组,实验经费充足,欢迎各位同学加入课题组):

博士后:环境科学与工程;

博士:环境科学、环境工程;

学术型硕士环境科学、环境工程;

学术型硕士化学工程与技术相关专业

专业硕士:资源与环境

热烈欢迎化学、化工、材料、物理、环境类本科推免到我们课题组,有意向请联系: wangqizhao@163.com;qzwang@chd.edu.cn




开授课程

科研项目


主持国家自然科学基金、高校科研业务费领军人才项目、科技部重点研发计划、陕西省自然科学基金重点项目、陕西省科技创新团队等国家、省部级项目20多项。


论文

2025

[1]The electron shuttle of aloe-emodin promotes the Cu-FeOOH solid solution photocatalytic membrane to activate hydrogen peroxide for the degradation of tannic in traditional Chinese medicine wastewater. Applied Catalysis B: Environment and Energy, 2025 361: 124566 (IF=22.1,一区)

[2] Al-O Bridged NiFeOx/BiVO4 Photoanode for Exceptional Photoelectrochemical Water Splitting. Chinese Chemical Letters, 2025, 34:110139.(IF=9.1,一区)

2024

[3] Spinel-covered interlayer MgO enhances the performance of BiVO4 photocatalytic ammonia synthesis. Applied Catalysis B: Environment and Energy, 2024, 341: 123670 (IF=22.1,一区)

[4] Porous TiWO3/SrWO4 with high titanium molar ratio for efficient photoelectrocatalytic nitrogen reduction under mild conditions. Applied Catalysis B: Environmental, 2024, 341: 123299 (IF=22.1,一区)

[5] Boosting excitons dissociation in defective-rich graphitic carbon nitride for efficient hydrogen peroxide photosynthesis and on-site environmental governance. Applied Catalysis B: Environment and Energy, 2024, 347: 123881 (IF=22.1,一区)

[6]Natural redox mediator anthraquinone aloe-emodin facilitated the in-situ mineralized γ-FeO(OH) membrane for the removal of tannic acid through photocatalytic-PMS activation. Journal of Hazardous Materials, 2024, 478: 135464. (IF=12.2Top,一区)

[7] Modulating stacking mode and molecular polarization in CTF/molecule heterojunction for meliorating photocatalytic CO2 conversion with nearly 100% CO selectivity. Chemical Engineering Journal, 2024, 499: 156661. (IF=15.1Top,一区)

[8]Synergetic regulation of interfacial electronic structure of Cu, N co-doped carbon modified TiO2 for efficient photocatalytic CO2 reduction. Chemical Engineering Journal, 2024, 496: 153799. (IF=15.1Top,一区)

[9]Novel ternary composite catalyst 2H/1T-MoS2/Co3O4-Ru for photoelectrocatalytic nitrogen reduction. Chemical Engineering Journal, 2024, 485: 149922. (IF=15.1Top,一区)

[10]Super-hydrophilic BiVO4/MgO/FeCo2O4 charge migration achieves efficient photoelectrochemical performance. Chemical Engineering Journal, 2024, 482: 149114. (IF=15.1Top,一区)

2023

[11] Heterostructured CoFe1.5Cr0.5S3O/COFs/BiVO4 photoanode boosts charge extraction for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2023, 336: 122921 (IF=22.1,一区)

[12] Highly Efficient Photocatalytic Hydrogen Production by ZnCdS Composite Catalyst Modified with NiCoP Nanosheets Prepared by LDH Precursor. Journal of Colloid and Interface Science, 2023, 649: 416-425. (IF=9.9,一区)

[13]Meta-kaolinite/LaFeCoO3 microsphere catalyst for photocatalytic persulfate activation: Enhanced removal of tetracycline hydrochloride. Chemical Engineering Journal, 2023, 466: 143076. (IF=15.1Top,一区)

[14]Rational design of honeycomb-like APTES-TiO2/COF heterostructures: promoted intramolecular charge transfer for visible-light-driven catalytic CO2 reduction. Chemical Engineering Journal, 2023, 456: 140990. (IF=15.1Top,一区)

[15]SrTiO3 nanosheets decorated with ZnFe2O4 nanoparticles as Z-scheme photocatalysts for highly efficient photocatalytic degradation and CO2 conversion. Separation and Purification Technology, 2023, 306: 122667 (IF=9.136,一区)

[16]Boosting Charge Separation of BiVO4 Photoanode Modified with 2D Metal–organic frameworks Nanosheets for High-Performance Photoelectrochemical Water Splitting. Chinese Chemical Letters, 2023, 34:108007(IF=9.1,一区)

[17] Electronegative Cl- modified BiVO4 photoanode synergized with nickel hydroxide cocatalyst for high-performance photoelectrochemical water splitting. Chemical Engineering Journal, 2023, 454: 140081. (IF=15.1Top,一区)

 

2022

[18] Multifunctional polymer coating cooperated with γ-Fe2O3 for boosting photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2022, 318: 121869 (IF=22.1,一区)

[19]Rational preparation of cocoon-like g-C3N4/COF hybrids: accelerated intramolecular charge delivery for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 315: 121568 (IF=22.1,一区)

[20] Facile synthesis of oxygen vacancies enriched ZnFe2O4 for effective photocatalytic peroxodisulfate activation. Separation and Purification Technology, 2022, 303: 122205 (IF=9.136,一区)

[21] Configuration of Hetero-framework via Integrating MOF and Triazine-containing COF for Charge-Transfer Promotion in Photocatalytic CO2 Reduction. Chemical Engineering Journal, 2022, 446: 137011. (IF=15.1Top,一区)

[22] Fluorine-doped iron oxyhydroxide cocatalyst: promotion on the WO3 photoanode conducted photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2022, 304: 120995 (IF=22.1,一区,ESI1%高被引论文)

[23]Constructing NiFe-Metal-Organic Frameworks from NiFe-Layered Double Hydroxide as a highly efficient cocatalyst for BiVO4 photoanode PEC water splitting. Chemical Engineering Journal, 2022, 433: 133592. (IF=15.1Top,一区,ESI1%高被引论文)

[24]In situ conversion builds MIL-101@NiFe-LDH heterojunction structures to enhance the oxygen evolution reaction. Chinese Chemical Letters, 2022, 33(8): 3787-3791. (Invited paper, IF=9.1,一区))

[25]Preparation of double-layered Co-Ci/NiFeOOH co-catalyst for highly meliorated PEC performance in Water Splitting. Advanced Powder Materials, 2022, 1(3): 100024 (Invited paperIF=9.1).

[26]Construction of immobilized films photocatalysts with CdS clusters decorated by metal Cd and BiOCl for photocatalytic degradation of tetracycline antibiotics. Chinese Chemical Letters, 2022, 33(8): 3705-3708. (IF=9.1,一区))

[27] The hydrophilic treatment of a novel co-catalyst for greatly improving the solar water splitting performance over Mo-doped bismuth vanadate. Journal of Colloid and Interface Science, 2022, 607: 219-228. (IF=9.9,一区)

[28]Boosting the photoelectrochemical water oxidation performance of bismuth vanadate by ZnCo2O4 nanoparticle. Chinese Chemical Letters, 2022, 33(4): 2060-2064. (IF=9.1,一区))

[29]Construction of TiO2-covalent organic framework Z-Scheme hybrid through coordination bond for photocatalytic CO2 conversion.Journal of Energy Chemistry, 2022, 64: 85-92 (ESI1%高被引论文,IF=13.1,一区)

[30] Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight. Journal of Environmental Sciences, 2022, 112: 59-70 (ESI热点论文和前1%高被引论文,IF=6.9,二区)

 

2021

[31] High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation.Applied Clay Science, 2021, 212: 106213. (ESI1%高被引论文,IF=5.907,二区)

[32]Super-hydrophilic CoAl-LDH on BiVO4 for enhanced photoelectrochemical water oxidation activity. Applied Catalysis B: Environmental, 2021, 286, 119875 (IF=22.1,一区,ESI 1% Highly Cited Paper, Hot Paper)

[33] Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Applied Catalysis B: Environmental, 2021, 284, 119762 (IF=22.1,一区,ESI 1% Highly Cited Paper, Hot Paper)

[34] Recent advances in kaolinite-based material for photocatalysts. Chinese Chemical Letters, 2021, 32:2617-2628. (IF=9.1,一区))

[35] Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting. Chinese Chemical Letters, 2021, 32:1869-1878. (IF=9.1,一区)

 

2020

[36] Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 266: 118513(IF=22.1TopESI高被引论文,一区)

[37] Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2020, 268: 118462.(IF=22.1Top,一区,ESI高被引论文)

[38] Fabrication of BiVO4 photoanodecocatalyzed with NiCo-layered double hydroxide for enhanced photoactivity of water oxidation. Applied Catalysis B: Environmental, 2020, 263: 118280.(IF=22.1Top,一区)

[39] One-step hydrothermal deposition of F: FeOOH onto BiVO4 photoanode for enhanced water oxidation. Chemical Engineering Journal, 2020. 392:123703. (IF=15.1Top,一区)

[40] Preparation of BiOCl0.9I0.1/β-Bi2O3 composite for degradation of tetracycline hydrochloride under simulated sunlight. Chinese Journal of Catalysis, 2020, 41: 1535-1543. (IF=12.92Top,一区,邀请论文)

[41] Facile loading of cobalt oxide on bismuth vanadate: proved construction of p-n junction for efficient photoelectrochemical water oxidation. Journal of Colloid and Interface Science, 2020, 570: 89-98. (IF=9.9,一区)

[42] La-doped ZnWO4 nanorods with enhanced photocatalytic activity for NO removal: Effects of La doping and oxygen vacancies. Inorganic Chemistry Frontiers, 2020, 7:356-368. (IF=7.779Top,一区)

 

2019

[43] Synthesis of non-noble metal nickel doped sulfide solid solution for improved photocatalytic performance. Applied Catalysis B: Environmental, 2019, 245: 439-447.(IF=22.1Top,一区,ESI热点论文/高被引论文)

[44]High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method. Chemical Engineering Journal, 2019. 371: 885-892. (IF=15.1Top,一区,ESI热点论文/高被引论文)

[45] Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Metals, 2019, 38(5):428-436. (IF=8.80,一区,邀请论文)

[46] Integration of Copper(II)-Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. ACS Sustainable Chemistry & Engineering, 2019,7: 15660-15670. (IF=8.40Top,一区)

[47] Construction of two dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustainable Chemistry & Engineering, 2019,7: 650-659.IF=8.40Top,一区,ESI高被引论文)

[48] In-situ formation of heterojunction between metal−organic framework and TiO2: dual promotional effect on photocatalysis. Science Bulletin, 2019, 64: 926-933. (IF=18.90,一区,邀请论文,ESI高被引论文)

[49] Metal (Ni2+/Co2+) sulfides modified BiVO4 for effective improvement in photoelectrochemical water splitting. Journal of Colloid and Interface Science, 2019, 549: 80-88. (IF=9.9,一区)

[50] A review on tungsten trioxide based photoanodes for water oxidation. Chinese Journal of Catalysis, 2019, 40: 1408-1420. (IF=12.92,一区,邀请论文)


科技成果

科研获奖:

[1]甘肃省自然科学三等奖

[2]非金属矿科学技术二等奖

[3]甘肃省科技进步一等奖

[4] 陕西省高等学校科学技术研究优秀成果一等奖

[5] 陕西省高等学校科学技术研究优秀成果二等奖


有效未转让专利:


[1]一种氨基化疏水染料酸性红-海藻酸钠-硫化镉复合光催化剂的制备及应用。2021.06.08 专利号:ZL 201910176561.X

[2]CdSNRs@NiSilicate超薄纳米片复合材料的制备及在析氢反应中的应用。2021.06.08 专利号:ZL 201910177171.4

[3]硫化镉/钒酸铋双层膜复合材料的制备及作为光电阳极的应用。2021.03.23 专利号:ZL 201810329038.1

[4]一种ZIF-67/钒酸铋复合材料的制备及作为光电阳极材料的应用。2021.02.05 专利号:ZL 201811425261.1

[5]一种磷掺杂石墨氮化碳/四氧化三铁复合材料的制备及应用2023.01.10专利号:ZL 202110255062.1

[6]一种Ru/p-Bi11VO19/Gr三元复合材料及其制备方法及应用,2023.6.28发明专利,专利号:202210741478.4

[7]一种MCo2O4/MgO/BiVO4复合光电催化材料及其制备方法及应用,2023.08.08发明专利,专利号:202210741477.X

[8]一种钴酸镍/氧化镁/钒酸铋光阳极及其制备方法,发明专利,2023.5.30,专利号:202210666395.3

[9]一种MoO3/Fe2(MoO4)3复合材料及其制备方法与应用,发明专利,2025年已授权:202411051146.9





荣誉奖励

“长安学者”特聘教授

明德教师奖

甘肃省教师成才奖



工作经历