张春国 教授

工程机械学院

头像

学位: 博士

毕业院校: 长安大学

邮件: zcguo2008@163.com

电话:

出生年月: 1982-10-15

办公地点: 长安大学工程机械学院

个人资料

  • 学院: 工程机械学院
  • 性别:
  • 出生年月: 1982-10-15
  • 职称: 教授
  • 学位: 博士
  • 学历: 博士研究生
  • 毕业院校: 长安大学
  • 联系电话:
  • 电子邮箱: zcguo2008@163.com
  • 通讯地址: 西安市南二环中段
  • 邮编: 710064
  • 传真:
  • 办公地址: 长安大学工程机械学院
  • 教育经历:

    2008.09 - 2013.12,长安大学,博士(提前攻博)

    2006.09 - 2009.07,长安大学,硕士

    2002.09 - 2006.07,山东交通学院,本科


个人简介

教授、博士生导师。先后入选长安大学首批拔尖博士培养计划(2011)、长安大学首批卓越科研提升计划(2015)、陕西省百篇优秀博士论文(2016)、陕西省青年科技新星(2016)、长安学者(2018)、陕西省中青年科技创新领军人才(2018)、长安学者领军人才(2023)等人才支持计划;曾获Best Researcher Awards、陕西省科学技术一等奖、中国公路学会科学技术二等奖等荣誉。担任国家重大人才工程会评专家、国家留学基金委评审专家、国家自然科学基金同行评议人以及多个重要学术期刊(如IJFEFMMD)特邀审稿人。

致力于疲劳与断裂领域的前沿研究;主持国家自然科学基金(青年2015、面上2017、面上2024),国家外专项目(20172022),国家科技支撑计划(2015),陕西省自然科学基金(青年2016、重点2017、面上2022),长安大学卓越青年基金、领军人才项目等纵向课题20余项;在Acta Materialia, International Journal of Fatigue等期刊上发表学术论文50余篇,其中以一作/通讯在中科院SCI一区且Top期刊上发表论文20余篇;授权专利21件。研究成果被世界科研新闻资讯网Phys.org、美国科技评论杂志Modern Metals magazineFF Journal、澳大利亚科学网Science Network WA、机械设计工程门户网站Engineering Clicks等国际科研媒体专题报道。30余次受邀在国际学术会议上担任大会共同主席(2届)、委员,作大会主题报告、特邀报告。

主要研究方向:

[1] 航空合金焊接结构的缓冲层延寿理论

[2] 高强合金及其焊接件的超载机理

[3] 非线弹性断裂概率预测

邮箱:zcguo2008@163.com


社会职务

[1] The Third International Conference on Mechanical, Electric and Industrial Engineering, 大会共同主席(Co-chair

[2] International Conference on Mechanical, Electric and Industrial Engineering, 大会共同主席(Co-chair

[3] International Journal of Statistical Analysis, 期刊编委(Editorial Board

[4] Mechanical Engineering Science, 期刊编委(Editorial Board

[5] 国家留学基金委评审专家

[6] 国家自然科学基金同行评议人

[7] 机械工程学会材料分会青年工作委员会委员

研究领域

主要研究方向:

[1] 高强合金焊接结构的缓冲层延寿理论

[2] 高强合金及焊接件的超载作用机制

[3] 基于材料力学性能和微观结构的非线弹性断裂预测


开授课程

本科生:《专业外语》《微机控制原理与接口技术》《计算机辅助设计》

留学生:Fatigue and Fracture》

博士生:Fracture Mechanics》《科技论文写作》


科研项目

主持科研项目:

  1. [1]      国家自然科学基金(面上),非均匀焊接接头的残余应力演化机理及疲劳寿命预测概率模型2024-2027

  2. [2]      长安学者领军人才,结构强度,2023-2028

  3. [3]      国家外专项目,非均匀性残余应力共同作用下焊接接头疲劳行为及寿命预测研究,2022-2023

  4. [4]      领军人才项目,结构疲劳可靠性与断裂机理研究,2021-2023

  5. [5]      长安学者(青年),疲劳与断裂,2018-2021

  6. [6]      国家外专项目,中-俄联合创办筑路机械国际期刊,2018-2021

  7. [7]      国家自然科学基金(面上),残余应力疲劳载荷耦合作用下高强钢接头寿命预测及缓冲层延寿机理研究,2017-2020

  8. [8]      国家自然科学基金(青年),含缓冲层高强钢焊接接头疲劳扩展模型及机理研究,2015-2017

  9. [9]      国家科技支撑计划,装载机整机及关键零部件载荷谱分析研究,2015-2017

  10. [10]   陕西省重点研发计划,含缓冲层的高强钢焊接接头的疲劳非线性及裂纹扩展速率定量预测研究,2017 -2019

  11. [11]   陕西省自然科学基金(青年),高强度合金钢焊接接头的疲劳断裂特征及缓冲层延寿机理研究,2016 -2017

  12. [12]   卓越青年基金,双金属焊缝焊接接头的缓冲层延寿机理及寿命预测模型,2015-2018

  13. [13]   中央高校基金,高强钢接头焊接界面疲劳裂纹扩展机理及预测模型研究,2015-2016

  14. [14]   长安大学拔尖博士培养计划(II期),具有双金属焊缝高强度低合金钢焊接接头的疲劳裂纹扩展性能研究,2013-2015

  15. [15]   长安大学拔尖博士培养计划(I期),高强度低合金钢双金属焊接疲劳性能研究,2012-2013

论文

  1. [1]     CG Zhang*, SG Yang, YZ Dong, SY Mu, HC Li, JL Zhang. Fatigue limit prediction of cracked and notched specimens related to grain size, International Journal of Fatigue, 2023, 177: 107905.

  2. [2]     WD Lu, CG Zhang*, S Luan. Quantifying effect of overload-induced residual stress behind crack tip on fatigue crack growth, Engineering Fracture Mechanics, 2023, 292: 109593.

  3. [3]     S Luan, CG Zhang*, X Zhang. Effect of residual stress redistribution on fatigue crack growth pertinent to crack closure and applied load, Materials & Design, 2023, 233: 112282.

  4. [4]   WD Lu, CG Zhang*. Contribution of overload-induced residual stress to fatigue retardation pertinent to notch geometry, Theoretical and Applied Fracture Mechanics, 2023, 127: 104001.

  5. [5]      JL Zhang*, CG Zhang*, ST Mu, S Wang, HC Li. Characterization of mechanical properties of in-service nickel-based alloy by continuous indentation. Structures, 2023, 48: 1346-1355.

  6. [6]      SG Yang, CG Zhang*. Probabilistic prediction of mode I fracture related to notch geometry and microstructure, Journal of the European Ceramic Society, 2023, 43: 718-726.

  7. [7]    SG Yang, CG Zhang*. Notch size influence on fatigue limit of steels pertinent to grain size. International Journal of Fatigue, 2022, 156: 106642.

  8. [8]    CG Zhang*, WD Lu. Unveiling contribution of overload-induced residual stress to fatigue retardation pertinent to crack closure and stress intensity. Materials Science & Engineering A, 2022, 831: 142268.

  9. [9]    SG Yang, CG Zhang*. Geometry and microstructure parameters to predict fracture at notches in a polycrystalline material, Journal of the European Ceramic Society, 2022, 42: 5556-64.

  10. [10]   SG Yang, CG Zhang*. Notch depth and root radius effects on quasi-brittle fracture of materials related to grain size. Ceramics International, 2022, 48: 23706-12.

  11. [11]   CG Zhang*, S Luan. Real-time measurement of welding residual-stress relaxation based on strain-controlled fatigue test, Fatigue & Fracture of Engineering Materials & Structures, 2022.

  12. [12]   WD Lu, CG Zhang*, QH Yu. Stress intensity-dependent relation between overload plastic zone and fatigue retardation in Al-alloy, Theoretical and Applied Fracture Mechanics, 2022, 121: 103520.

  13. [13]    SG Yang, CG Zhang*Size effect on quasi-brittle fracture pertinent to microstructure and plastic limit. Theoretical and Applied Fracture Mechanics, 2021, 114, 102978.

  14. [14]   SG Yang, CG Zhang*, XC Zhang*. Notch radius effect on fracture toughness of ceramics pertinent to grain size. Journal of the European Ceramic Society, 2020, 40: 4217-23.

  15. [15]    SG Yang, CG Zhang*, XC Zhang*. Probabilistic relation between stress intensity and fracture toughness in ceramics. Ceramics International, 2020, 46: 20558-64.

  16. [16]   CG Zhang, SP Batuev, PA Radchenko, AV Radchenko*. Modelling of fracture of spatial concrete structures under impulse loads. Mechanics of Solids, 2019, 54: 854-60.

  17. [17]   CG Zhang*, RW Liu, QK Liu, CP Ren. Effect of stop hole-induced material removal on fatigue properties of cracked DT4C steel. Materiali in Tehnologije, 2019, 53: 457-65.

  18. [18]  CG Zhang*,SG Yang. Probabilistic prediction of strength and fracture toughness scatters for ceramics using normal distribution. Materials, 2019, 12: 727.

  19. [19]   CG Zhang, X Hu*, T Sercombe, QB Li, ZM Wu, PM Lu. Prediction of ceramic fracture with normal distribution pertinent to grain size. Acta Materialia, 2018, 145: 41-8.

  20. [20]  CG Zhang, X Hu*, ZM Wu, QB Li. Influence of grain size on granite strength and toughness with reliability specified by normal distribution. Theoretical and Applied Fracture Mechanics. 2018, 96: 534-44.

  21. [21]   CP Ren, QQ Wu, CG Zhang*, SZ Zhang. A normal distribution-based methodology for analysis of fatal accidents in land hazardous material transportation. International Journal of Environmental Research and Public Health. 2018, 15: 1437.

  22. [22]  CG Zhang*, BB Lei, RW Liu, FF Huo. Trends in fatigue crack growth for the 2024 Al-alloy after a single tensile overload. Materiali in Tehnologije, 2018, 52 : 703-10.

  23. [23]  CG Zhang*, WZ Song, QT Wang, W Liu. Influence of pre-stress magnitude on fatigue crack growth behavior of Al-alloy. Materials, 2018, 11: 1267.

  24. [24]    CG Zhang*, CP Ren, BB Lei, X Hu, PM Lu. Effect of post-weld heat-treatment on the fatigue and fracture mechanisms of weld-repaired Bisplate80 with or without a buffer layer. Journal of Materials Engineering and Performance, 2017, 26: 2742-53.

  25. [25]   CG Zhang*, JZ Hui, PM Lu, X Hu, J Liang. Effects of heterogeneity and load amplitude on fatigue rate prediction of a welded joint. Advances in Mechanical Engineering, 2016, 8: 1-8.

  26. [26]    CG Zhang*, PM Lu, X Hu.Residual stress and softening in welded high-strength low-alloy steel with a buffering layer. Journal of Materials Processing Technology, 2014, 214: 229-37.

  27. [27]   CG Zhang*, PM Lu, X Hu, XD Song. Residual stress-induced deformation and fatigue crack growth in weld-repaired high-strength low-alloy steel with soft buffer layer. Materials Science and Engineering A, 2013, 564: 147-57.

  28. [28]    CG Zhang*, X Hu, PM Lu, GP Zhang. Tensile overload-induced plastic deformation and fatigue behavior in weld-repaired high-strength low-alloy steel. Journal of Materials Processing Technology, 2013, 213: 2005-14.

  29. [29]   CG Zhang*, X Hu, PM Lu. Fatigue and hardness effects of a thin buffer layer on the heat affected zone of a weld repaired Bisplate80.Journal of Materials Processing Technology, 2012, 212: 393-401.

  30. [30]    CG Zhang, XD Song, PM Lu*, X Hu. Effect of microstructure onmechanical properties in weld-repaired high strength low alloy steel.Materials & Design, 2012, 36: 233-42.

  31. [31]   CG Zhang, JZ Yang, X Hu,PM Lu*,MM Zhao. Microstructure characteristics and fatigue properties of welded HSLA with and without buffer layer. Materials Science and Engineering A, 2012, 546: 169-79.

  32. [32]   CG Zhang*, PM Lu, X Hu, XD Song. Effect of buffer layer and notch locationon fatigue behavior in welded high-strength low-alloy. Journal of Materials Processing Technology, 2012, 2122091-101.

  33. [33]  CG Zhang, S van der Vyer, X Hu*, PM Lu. Fatigue crack growth behaviour in weld-repaired high strength low alloy steel.Engineering Fracture Mechanics, 2011, 78: 1862-75.

  34. [34]   DT Li*, CG Zhang, PM Lu*. Fatigue property and improvement of a rounded welding region between the diaphragm plate and closed rib of an orthotropic steel bridge deck. Metals, 2020, 10, 161.

  35. [35]   AV Radchenko, PA Radchenko, SP Batuev, CG Zhang. Implementation of Johnson-Cook model in EFES program software. AIP Conference Proceedings, 20182027030178.

  36. [36]   CG Zhang*, SG Yang, S Luan, JZ Hui, W Liu, CP Ren. Positive effect of indentation on fatigue crack growth of mild steel. Journal of Physics: Conference Series, 2018, 1074, 012037.

  37. [37]  CG Zhang*, PM Lu, JH Li. Effect of buffer layer thickness on fatigue and residual stress of weldedhigh-strength low-alloy. Advanced Materials Research, 2013, 820: 110-3.

  38. [38]   CG Zhang, S van der Vyer, X Hu*. Fatigue behaviour of weld-repaired high strength low alloy steel.Advanced Materials Research, 2011, 275: 39-42.

科技成果

荣誉奖励

[1] 2022年,获Best Researcher Awards

[2] 2019年,获陕西省科学技术一等奖

[3] 2018年,入选陕西省中青年科技创新领军人才

[4] 2018年,入选长安大学首批长安学者人才计划

[5] 2018年,获中国公路学会科学技术二等奖

[6] 2016年,入选陕西省青年科技新星

[7] 2016年,入选陕西省优秀博士学位论文

[8] 2015年,入选长安大学首批卓越青年科研提升计划

[9] 2012年,获陕西省科学技术成果

工作经历


2017.05 –      至今,长安大学,工程机械学院,教授、副院长(2020.02)

2015.11 – 2017.05,长安大学,工程机械学院,副教授

2014.01 – 2015.11,长安大学,工程机械学院,讲