个人资料
个人简介刘维宇,男,1987年3月生,陕西西安人。任职于长安大学电子与控制工程学院,教授,硕士生导师,电控学院学科建设责任教授。获长安大学优秀教师、先进科研工作者、校级一类青年学术骨干等荣誉。 教学方面:第2主编编著普通高等教育卓越工程能力培养系列教材《基于ARM 的单片机应用及实践——GD32 案例式教学》1 部,主持完成建设研究生在线课程《机器学习》(在超星“学银在线”全国平台已上线)。主持一级学会教改项目1 项,以第1 作者发表教学论文1 篇。主讲《传感器与检测技术》《工程项目管理》两门必修课程。 科研方面:已发表SCI 学术论文90余 篇,总引用2210余次,H 指数30,i10 指数66,单篇最高影响因子29.4(ADV MATER)。其中,Science Advances (Science子刊)1篇, ADV MATER 1 篇,NANO ENERGY 2 篇,LAB CHIP 10 篇(芯片实验室领域旗舰期刊),SMALL 2 篇,PHYS FLUIDS 6 篇。1 篇论文入选 LAB CHIP 封面文章,1 篇论文入选SMALL 封面文章,1 篇论文入选PHYS FLUIDS 期刊首页亮点论文,1 篇论文入选ESI 高被引。主持国家自然科学基金面上项目、青年项目,陕西省重点研发计划,陕西省自然科学基础研究计划等国家和省部级科研项目。第1 发明人授权软件著作权6 项,科技成果转让4 项。主持完成课题“非线性电动微流体力学及其微纳流控器件研究”获得陕西高等学校科学技术研究优秀成果奖一等奖(排名1/5)。 学术职务: 2025~至今,国际SCI学术期刊《Micromachines》编委 (中科院大类3区, JCR Q2) 2025~至今,国际SCI学术期刊《Applied Sciences》编委 (JCR Q1,T2 级别国际刊物,我校评职称认定外文 B刊) 社会职务2025~至今,国际SCI学术期刊《Micromachines》编委(Section C1: Micro/Nanochip Electrokinetics)(中科院大类3区) 2025~至今,国际SCI学术期刊《Applied Sciences》编委(此外,还主持特刊Electrokinetic phenomena in microfluidics and nanofluidics and their lab-on-chip applications)(JCR Q1,中科院大类4区) 2019~至今 国家自然科学基金委数理科学部青年科学基金项目通讯评审专家 2024~至今 国家自然科学基金委信息科学部面上项目通讯评审专家 2024~至今 广东省科学技术厅科研项目通讯评审专家 2022~至今 教育部学位论文通讯评审专家 研究领域在哈尔滨工业大学任玉坤教授(中组部万人计划“青年拔尖人才”入选者)的带领下,围绕“集成电路+电动操控+医工交叉微纳流控芯片的异构集成”“电动微纳流体力学”等方向展开了系列深入研究。 我们团队关于"芯片实验室(Lab on a chip)与集成电路(Integrated circuit)工艺协同"研究发表的学术论文被国内外众多知名科学家,包括美国三院院士、中国科学院/工程院院士、诺贝尔奖获得者进行了广泛正面引用。 开授课程本科生课程: 1.传感器与检测技术 2. 工程项目管理 科研项目主持的科研项目: 1、国家自然科学基金面上项目, 61万元,2022-2025(国家级) 2、国家自然科学基金青年项目, 25万元,2018-2020(国家级) 3、陕西省自然科学基础研究计划青年项目,3万元,2019-2020(省部级) 4、中央高校基本科研业务费,15万元,2022-2024(校级) 5、中央高校基本科研业务费,8万元,2017-2018(校级) 6、陕西省重点研发计划-一般项目(工业领域),7万元,2022-2023(省部级) 7、企业横向课题,15万元,2023-2024 (横向) 主持的教改项目: 1、新工科背景下轨道交通自动化专业“知行合一”实践类人才培养模式改革与探索,中国交通教育研究会教育科学研究课题(省部级教改项目) 2、长安大学研究生教育教学改革专项1项(校级教改项目) 论文已发表英文学术论文100篇(SCI检索论文96篇),引用2250余次,H因子30,i10指数67。 [1] Ding H, Liu W, Shao J, Ding Y, Zhang L, Niu J. Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system. Langmuir. 2013;29:12093-103. [2] Guo C, Liu W. Homogenization of a variational problem in three-dimension space. Applied Mathematics and Computation. 2014;232:261-71. [3] Liu W, Ren Y, Shao J, Jiang H, Ding Y. A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. Journal of Physics D: Applied Physics. 2014;47:075501. [4] Ding H, Liu W, Ding Y, Shao J, Zhang L, Liu P, et al. Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. Rsc Advances. 2015;5:5523-32. [5] Ding H, Shao J, Ding Y, Liu W, Li X, Tian H, et al. Effect of island shape on dielectrophoretic assembly of metal nanoparticle chains in a conductive-island-based microelectrode system. Applied Surface Science. 2015;330:178-84. [6] Ding H, Shao J, Ding Y, Liu W, Tian H, Li X. One-dimensional Au–ZnO heteronanostructures for ultraviolet light detectors by a two-step dielectrophoretic assembly method. ACS Applied Materials & Interfaces. 2015;7:12713-8. [7] Liu W, Shao J, Jia Y, Tao Y, Ding Y, Jiang H, et al. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole–dipole interactions. Soft Matter. 2015;11:8105-12. [8] Ren Y, Liu W, Jia Y, Tao Y, Shao J, Ding Y, et al. Induced-charge electroosmotic trapping of particles. Lab on a Chip. 2015;15:2181-91. [9] Jia Y, Ren Y, Liu W, Hou L, Tao Y, Hu Q, et al. Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on a Chip. 2016;16:4313-8. [10] Jia Y, Ren Y, Liu W, Hou L, Tao Y, Hu Q, et al. Electrocoalescence of paired droplets encapsulated in double-emulsion drops (vol 16, pg 4313, 2016). LAB ON A CHIP. 2016;16:4466-. [11] Liu W, Shao J, Ren Y, Liu J, Tao Y, Jiang H, et al. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics. 2016;10. [12] Liu W, Shao J, Ren Y, Wu Y, Wang C, Ding H, et al. Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping. Journal of Micromechanics and Microengineering. 2016;26:095003. [13] Liu W, Wang C, Ding H, Shao J, Ding Y. AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range. Applied Surface Science. 2016;370:184-92. [14] Ren Y, Liu J, Liu W, Lang Q, Tao Y, Hu Q, et al. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip. 2016;16:2803-12. [15] Ren Y, Liu W, Liu J, Tao Y, Guo Y, Jiang H. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics. 2016;10. [16] Tao Y, Ren Y, Liu W, Wu Y, Jia Y, Lang Q, et al. Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis. 2016;37:1326-36. [17] Chen X, Ren Y, Liu W, Feng X, Jia Y, Tao Y, et al. A simplified microfluidic device for particle separation with two consecutive steps: induced charge electro-osmotic prefocusing and dielectrophoretic separation. Analytical chemistry. 2017;89:9583-92. [18] Hou L, Ren Y, Jia Y, Deng X, Liu W, Feng X, et al. Continuously electrotriggered core coalescence of double-emulsion drops for microreactions. ACS applied materials & interfaces. 2017;9:12282-9. [19] Hu Q, Ren Y, Liu W, Chen X, Tao Y, Jiang H. Fluid flow and mixing induced by AC continuous electrowetting of liquid metal droplet. Micromachines. 2017;8:119. [20] Hu Q, Ren Y, Liu W, Tao Y, Jiang H. Simulation analysis of improving microfluidic heterogeneous immunoassay using induced charge electroosmosis on a floating gate. Micromachines. 2017;8:212. [21] Jia Y, Ren Y, Hou L, Liu W, Deng X, Jiang H. Sequential coalescence enabled two‐step microreactions in triple‐core double‐emulsion droplets triggered by an electric field. Small. 2017;13:1702188. [22] Li Y, Ren Y, Liu W, Chen X, Tao Y, Jiang H. On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels. Electrophoresis. 2017;38:983-95. [23] Likai H, Yukun R, Yankai J, Xiaokang D, Weiyu L, Xiangsong F, et al. Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. 2017. [24] Liu W, Ren Y, Tao Y, Chen X, Wu Q. Electrode cooling effect on out-of-phase electrothermal streaming in rotating electric fields. Micromachines. 2017;8:327. [25] Liu W, Ren Y, Tao Y, Chen X, Yao B, Hui M, et al. Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Physics of Fluids. 2017;29. [26] Liu W, Ren Y, Tao Y, Li Y, Chen X. Controllable rotating behavior of individual dielectric microrod in a rotating electric field. Electrophoresis. 2017;38:1427-33. [27] Liu W, Ren Y, Tao Y, Yao B, Liu N, Wu Q. A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Physics of Fluids. 2017;29. [28] Xiaoming C, Yukun R, Weiyu L, Xiangsong F, Yankai J, Ye T, et al. A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. 2017. [29] Deng X, Ren Y, Hou L, Liu W, Jia Y, Jiang H. Electric field-induced cutting of hydrogel microfibers with precise length control for micromotors and building blocks. ACS Applied Materials & Interfaces. 2018;10:40228-37. [30] Du K, Liu W, Ren Y, Jiang T, Song J, Wu Q, et al. A high-throughput electrokinetic micromixer via AC field-effect nonlinear electroosmosis control in 3D electrode configurations. Micromachines. 2018;9:432. [31] Jia Y, Ren Y, Hou L, Liu W, Jiang T, Deng X, et al. Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on a Chip. 2018;18:1121-9. [32] Jiang T, Ren Y, Liu W, Tang D, Tao Y, Xue R, et al. Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks. Physics of Fluids. 2018;30. [33] Liu W, Ren Y, Tao Y, Li Y, Wu Q. On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: Physical perspectives and theoretical analysis. Journal of Micromechanics and Microengineering. 2018;28:055004. [34] Liu W, Ren Y, Tao Y, Yao B, Li Y. Simulation analysis of rectifying microfluidic mixing with field‐effect‐tunable electrothermal induced flow. Electrophoresis. 2018;39:779-93. [35] Liu W, Wu Q, Ren Y, Cui P, Yao B, Li Y, et al. On the bipolar dc flow field-effect-transistor for multifunctional sample handing in microfluidics: A theoretical analysis under the debye–huckel limit. Micromachines. 2018;9:82. [36] Ren Y, Liu W, Tao Y, Hui M, Wu Q. On AC-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing. Micromachines. 2018;9:102. [37] Ren Y, Liu W, Wang Z, Tao Y. Induced-charge electrokinetics in rotating electric fields: A linear asymptotic analysis. Physics of Fluids. 2018;30. [38] Ren Y, Liu X, Liu W, Tao Y, Jia Y, Hou L, et al. Flexible particle flow‐focusing in microchannel driven by droplet‐directed induced‐charge electroosmosis. Electrophoresis. 2018;39:597-607. [39] Song Y, Ju Y, Du K, Liu W, Song J. Online road detection under a shadowy traffic image using a learning-based illumination-independent image. Symmetry. 2018;10:707. [40] Sun H, Ren Y, Liu W, Feng X, Hou L, Tao Y, et al. Flexible continuous particle beam switching via external-field-reconfigurable asymmetric induced-charge electroosmosis. Analytical chemistry. 2018;90:11376-84. [41] Tao Y, Liu W, Ren Y, Hu Y, Li G, Ma G, et al. On developing field-effect-tunable nanofluidic ion diodes with bipolar, induced-charge electrokinetics. Micromachines. 2018;9:179. [42] Yao B, Dong Z, Liu W. Effective joint DOA-DOD estimation for the coexistence of uncorrelated and coherent signals in massive multi-input multi-output array systems. EURASIP Journal on Advances in Signal Processing. 2018;2018:64. [43] Zhang K, Ren Y, Hou L, Feng X, Chen X, Jiang H. An efficient micromixer actuated by induced-charge electroosmosis using asymmetrical floating electrodes. Microfluidics and Nanofluidics. 2018;22:130. [44] Deng X, Ren Y, Hou L, Liu W, Jiang T, Jiang H. Compound‐droplet‐pairs‐filled hydrogel microfiber for electric‐field‐induced selective release. Small. 2019;15:1903098. [45] Du K, Song J, Liu W, Tao Y, Ren Y. Multifrequency induced-charge electroosmosis. Micromachines. 2019;10:447. [46] Hu Q, Ren Y, Zheng X, Hou L, Jiang T, Liu W, et al. A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluidics and Nanofluidics. 2019;23:13. [47] Jiang T, Tao Y, Jiang H, Liu W, Hu Y, Tang D. An experimental study of 3D electrode-facilitated particle traffic flow-focusing driven by induced-charge electroosmosis. Micromachines. 2019;10:135. [48] Lei X, Zhao X, Wang G, Liu W. A novel temperature–hysteresis model for power battery of electric vehicles with an adaptive joint estimator on state of charge and power. Energies. 2019;12:3621. [49] Liu W, Ren Y, Chen F, Song J, Tao Y, Du K, et al. A microscopic physical description of electrothermal‐induced flow for control of ion current transport in microfluidics interfacing nanofluidics. Electrophoresis. 2019;40:2683-98. [50] Ren Y, Song C, Liu W, Jiang T, Song J, Wu Q, et al. On hybrid electroosmotic kinetics for field‐effect‐reconfigurable nanoparticle trapping in a four‐terminal spiral microelectrode array. Electrophoresis. 2019;40:979-92. [51] Song J, Chen F, Wu Q, Liu W, Xue F, Du K. Optimization of passenger transportation corridor mode supply structure in regional comprehensive transport considering economic equilibrium. Sustainability. 2019;11:1172. [52] Song J, Chen F, Zhu Y, Zhang N, Liu W, Du K. Experiment calibrated simulation modeling of crowding forces in high density crowd. Ieee Access. 2019;7:100162-73. [53] Sun H, Ren Y, Hou L, Tao Y, Liu W, Jiang T, et al. Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow. Analytical chemistry. 2019;91:5729-38. [54] Zhang K, Ren Y, Tao Y, Liu W, Jiang T, Jiang H. Efficient micro/nanoparticle concentration using direct current-induced thermal buoyancy convection for multiple liquid media. Analytical Chemistry. 2019;91:4457-65. [55] Ge Z, Yan H, Liu W, Song C, Xue R, Ren Y. A numerical investigation of enhancing microfluidic heterogeneous immunoassay on bipolar electrodes driven by induced-charge electroosmosis in rotating electric fields. Micromachines. 2020;11:739. [56] Hou L, Ren Y, Liu W, Deng X, Chen X, Jiang T, et al. Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;599:124905. [57] Lei X, Feng B, Wang G, Liu W, Yang Y. A novel fastslam framework based on 2d lidar for autonomous mobile robot. Electronics. 2020;9:695. [58] Liu W, Ren Y, Tao Y, Yan H, Xiao C, Wu Q. Buoyancy-free janus microcylinders as mobile microelectrode arrays for continuous microfluidic biomolecule collection within a wide frequency range: A numerical simulation study. Micromachines. 2020;11:289. [59] Liu W, Ren Y, Tao Y, Zhou Z, Wu Q, Xue R, et al. Multiple frequency electrothermal induced flow: theory and microfluidic applications. Journal of Physics D: Applied Physics. 2020;53:175304. [60] Liu W, Ren Y, Xue R, Song C, Wu Q. On ion transport regulation with field‐effect nonlinear electroosmosis control in microfluidics embedding an ion‐selective medium. Electrophoresis. 2020;41:778-92. [61] Liu W, Sun Y, Yan H, Ren Y, Song C, Wu Q. A simulation analysis of nanofluidic ion current rectification using a metal-dielectric janus nanopore driven by induced-charge electrokinetic phenomena. Micromachines. 2020;11:542. [62] Ren Y, Xue R, Liu W, Tao Y, Bao F. Liquid metal droplet-enabled electrocapillary flow in biased alternating electric fields: a theoretical analysis from the perspective of induced-charge electrokinetics. Journal of Micromechanics and Microengineering. 2020;30:085007. [63] Sun H, Ren Y, Tao Y, Liu W, Jiang T, Jiang H. Combined alternating current electrothermal and dielectrophoresis-induced tunable patterning to actuate on-chip microreactions and switching at a floating electrode. Sensors and Actuators B: Chemical. 2020;304:127397. [64] Xue R, Liu W, Jiang T, Song C, Jiang H, Ren Y. Pumping of Ionic Liquids by Liquid Metal‐Enabled Electrocapillary Flow under DC‐Biased AC Forcing. Advanced Materials Interfaces. 2020;7:2000345. [65] Zhang K, Ren Y, Hou L, Tao Y, Liu W, Jiang T, et al. Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluidics and Nanofluidics. 2020;24:1. [66] Zhang K, Ren Y, Tao Y, Deng X, Liu W, Jiang T, et al. Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow. Analytica Chimica Acta. 2020;1096:108-19. [67] Du K, Liu W, Ren Y, Jiang T, Song J, Wu Q, et al. A High-Throughput Electrokinetic Micromixer via. Micro/Nano-Chip Electrokinetics, Volume III. 2021:137. [68] Liu W, Tao Y, Ge Z, Zhou J, Xu R, Ren Y. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full‐scaled simulation study considering surface‐coupled electrocapillary two‐phase flow. Electrophoresis. 2021;42:950-66. [69] Liu W, Tao Y, Xue R, Song C, Wu Q, Ren Y. Continuous‐flow nanoparticle trapping driven by hybrid electrokinetics in microfluidics. Electrophoresis. 2021;42:939-49. [70] Xue R, Tao Y, Sun H, Liu W, Ge Z, Jiang T, et al. Small universal mechanical module driven by a liquid metal droplet. Lab on a Chip. 2021;21:2771-80. [71] Zhou J, Tao Y, Liu W, Sun H, Wu W, Song C, et al. Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator. Nano Energy. 2021;89:106451. [72] Ge Z, Guo W, Tao Y, Liu W, Xue R, Song C, et al. Desktop-level small automatic guided vehicle driven by a liquid metal droplet. Lab on a Chip. 2022;22:826-35. [73] Ge Z, Tao Y, Liu W, Song C, Xue R, Jiang H, et al. DC electric field-driven heartbeat phenomenon of gallium-based liquid metal on a floating electrode. Soft Matter. 2022;18:609-16. [74] Guo W, Tao Y, Liu W, Song C, Zhou J, Jiang H, et al. A visual portable microfluidic experimental device with multiple electric field regulation functions. Lab on a Chip. 2022;22:1556-64. [75] Liu N, Rogers M, Cui H, Liu W, Li X, Delmas P. Deep convolutional neural networks for regular texture recognition. PeerJ Computer Science. 2022;8:e869. [76] Song C-L, Tao Y, Liu W-Y, Chen Y-C, Xue R, Jiang T-Y, et al. Fluid pumping by liquid metal droplet utilizing ac electric field. Physical Review E. 2022;105:025102. [77] Tao Y, Liu W, Ge Z, Song C, Xue R, Ren Y. Numerical characterization of inter‐core coalescence by AC dielectrophoresis in double‐emulsion droplets. Electrophoresis. 2022;43:2141-55. [78] Tao Y, Liu W, Ge Z, Yao B, Ren Y. Alternating-current nonlinear electrokinetics in microfluidic insulator-decorated bipolar electrochemistry. Physics of Fluids. 2022;34. [79] Tao Y, Liu W, Song C, Ge Z, Li Z, Li Y, et al. Numerical investigation of field‐effect control on hybrid electrokinetics for continuous and position‐tunable nanoparticle concentration in microfluidics. Electrophoresis. 2022;43:2074-92. [80] Tao Y, Shi C, Han F, Yang R, Xue R, Ge Z, et al. Liquid metal droplet motion transferred from an alkaline solution by a robot arm. Lab on a Chip. 2022;22:4621-31. [81] Ge Z, Guo W, Tao Y, Sun H, Meng X, Cao L, et al. Wireless and closed‐loop smart dressing for exudate management and on‐demand treatment of chronic wounds. Advanced Materials. 2023;35:2304005. [82] Guo W, Tao Y, Mao K, Liu W, Xue R, Ge Z, et al. Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. Lab on a Chip. 2023;23:157-67. [83] Liu N, Ma X, Yang P, Liu W. In: Proceedings of the 2023 5th International Conference on Internet of Things, Automation and Artificial Intelligence. 2023. p. 849-54. [84] Liu W, Tao Y, Chen Y, Ge Z, Chen J, Li Y. Developing an active microfluidic pump and mixer driven by ac field-effect-mediated induced-charge electro-osmosis of metal–dielectric janus micropillars: Physical perspective and simulation analysis. Applied Sciences. 2023;13:8253. [85] Liu W, Tao Y, Li Y, Ge Z, Wu Q, Ren Y. Numerical characterization of transient electrohydrodynamic deformation and coalescence of single-core double emulsion droplets by AC field dielectrophoresis. Chemical Engineering Science. 2023;277:118877. [86] Zhou X, Yan J, Yan M, Mao K, Yang R, Liu W. Path planning of rail-mounted logistics robots based on the improved dijkstra algorithm. Applied Sciences. 2023;13:9955. [87] Du K, Shi Q, Song J, Chen D, Liu W. Prediction of Truck Fuel Consumption Based on Crossformer-LSTM Characteristic Distillation. Applied Sciences. 2024;15:283. [88] Ge Z, Guo W, Tao Y, Li S, Li X, Liu W, et al. Ambient Moisture‐Driven Self‐Powered Iontophoresis Patch for Enhanced Transdermal Drug Delivery. Advanced Healthcare Materials. 2024;13:2401371. [89] Song C, Tao Y, Liu W, Chen Y, Yang R, Guo W, et al. Electrokinetic behavior of an individual liquid metal droplet in a rotating electric field. Physics of Fluids. 2024;36. [90] Wang X, Gao Y, Lu D, Li Y, Du K, Liu W. Lithium battery soc estimation based on improved iterated extended kalman filter. Applied Sciences. 2024;14:5868. [91] Xue R, Yang R, Liu W, Guo W, Qu Z, Wang S, et al. A Liquid Metal Enabled Fluid Pumping in 3D Space. Advanced Functional Materials. 2024;34:2410349. [92] Yang J, Wang J, Li Y, Yao B, Xu T, Lu T, et al. Image deraining algorithm based on multi-scale features. Applied Sciences. 2024;14:5548. [93] Zhou J, Tao Y, Liu W, Sun T, Wu F, Shi C, et al. A portable and integrated traveling-wave electroosmosis microfluidic pumping system driven by triboelectric nanogenerator. Nano Energy. 2024;127:109736. [94] Guo W, Xu M, Tao Y, Liu W, Zhou H, Guan X, et al. Integrated horizontal convective PCR system for clinical diagnostics. Science Advances. 2025;11:eadx8434. [95] Li T, Ye P, Wang H, Liu W, Huang X, Ke J. Optimization and Evaluation of the PEDF System Configuration Based on Planning and Operating Dual-Layer Model. Applied Sciences. 2025;15:7776. [96] Li W, Yang C, Zhou X, Liu W, Zheng G. Situation-Aware Causal Inference-Driven Vehicle Lane-Changing Decision-Making. Applied Sciences. 2025;15:8864. [97] Tao Y, Gao Y, Liu Z, Chen Y, Liu W, Yu G, et al. Many-body electrohydrodynamic contact dynamics in alternating-current dielectrophoresis: Resolving hierarchical assembly of soft binary colloids. Physics of Fluids. 2025;37. [98] Wang Z, Hu S, Wang X, Gao Y, Zhang W, Chen Y, et al. YOLOv13-Cone-Lite: An Enhanced Algorithm for Traffic Cone Detection in Autonomous Formula Racing Cars. Applied Sciences. 2025;15:9501. [99] Wu Q, Huang S, Wang S, Zhou X, Shi Y, Zhou X, et al. A Numerical Investigation of Enhanced Microfluidic Immunoassay by Multiple-Frequency Alternating-Current Electrothermal Convection. Applied Sciences. 2025;15:4748. [100] Dual‐Layer Flexible Liquid Metal Fiber for Plantar Pressure Monitoring and Synchronous Wound Electrotherapy, Z Ge, C Wang, Y Tao, F Qiu, F Liu, W Guo, W Liu, M Zhao, R Yang, ... Advanced Healthcare Materials, e02681
基于ARM的单片机应用及实践——GD32案例式教学,机械工业出版社,排名2/2 科技成果1. 《非线性电动微流体力学及其微纳流控器件研究》,2022年度陕西高校科学技术奖,一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。 2. 授权软件著作权10余项。 3. 科技成果转让4项。
荣誉奖励1. 科技奖励:第1完成人获2022年度陕西高等学校科学技术奖一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。 2. 2015-2018年度先进科研工作者,长安大学,2019.05; 3.2019-2021年度先进科研工作者,长安大学,2022.04; 4.“长安学者”一类青年学术骨干,长安大学,2021.06; 5. 学科建设责任教授,长安大学,2020.06。 工作经历2016-09~2018-11 【中国】长安大学 讲师 2018-11~2023-12 【中国】长安大学 副教授 2019-12~至今 【中国】长安大学 硕士研究生导师 2023-12~至今 【中国】长安大学 教授 |