个人资料
个人简介刘维宇,男,教授,硕士生导师,工学博士,学科建设责任教授,“长安学者”一类青年学术骨干,长安大学先进科研工作者。1987年3月出生于陕西省西安市。 研究方向:长期从事交通运输工程及控制,和电动微纳流体力学理论及应用方面的基础研究工作。 项目方面:主持国家自然科学基金面上项目1项,国家自然科学基金青年项目1项,陕西省重点研发计划1项,陕西省自然科学基金青年项目1项,中央高校高新技术研究培育项目1项,中央高校优秀博士毕业生项目1项,企业横向课题1项。 发表学术论文方面:在Advanced materials,Advanced Functional materials,Nano Energy、Small、Lab Chip等重要国际期刊上共发表SCI学术论文87篇,正面引用1700次,谷歌学术H因子26,i10指数58,流体力学著名期刊Physics of Fluids发表6篇,1篇论文入选2018年ESI高被引。 知识产权方面:授权软件著作权10项,成果转让4项。 科技奖励方面:以第1完成人获2022年度陕西高等学校科学技术奖一等奖1项。 学术兼职:国家自然科学基金委员会数学物理科学部科研项目通讯评审专家。
社会职务国家自然科学基金委数理科学部项目网络评审专家 研究领域研究领域: 1、交通能源网融合 2、交通运输工程及控制 3、电动微纳流体力学理论及应用 4、人工智能、模式识别在生物微流控芯片中的应用。 开授课程本科生课程: 1.传感器与检测技术 2. 工程项目管理 科研项目主持的科研项目: 1、国家自然科学基金面上项目, 61万元,2022-2025(国家级) 2、国家自然科学基金青年项目, 25万元,2018-2020(国家级) 3、陕西省自然科学基础研究计划青年项目,3万元,2019-2020(省部级) 4、中央高校基本科研业务费,15万元,2022-2024(校级) 5、中央高校基本科研业务费,8万元,2017-2018(校级) 6、陕西省重点研发计划-一般项目(工业领域),7万元,2022-2023(省部级) 7、企业横向课题,15万元,2023-2024 (横向) 主持的教改项目: 1、新工科背景下轨道交通自动化专业“知行合一”实践类人才培养模式改革与探索,中国交通教育研究会教育科学研究课题(省部级教改项目) 2、长安大学研究生教育教学改革专项1项(校级教改项目) 论文已发表SCI学术论文88篇,引用1800次,H因子26,i10指数61。 曾经发表过的SCI检索期刊学术论文: [1]A portable and integrated traveling-wave electroosmosis microfluidic pumping system driven by triboelectric nanogenerator. Nano Energy. 2024;127:109736. [2]Image Deraining Algorithm Based on Multi-Scale Features. Applied Sciences. 2024;14:5548. [3]A Liquid Metal Enabled Fluid Pumping in 3D Space. Advanced Functional Materials. 2024:2410349. [4]Lithium Battery SoC Estimation Based on Improved Iterated Extended Kalman Filter. Applied Sciences. 2024;14:5868. [5]Electrokinetic behavior of an individual liquid metal droplet in a rotating electric field. Physics of Fluids. 2024;36. [6]Fast-M Adversarial Training Algorithm for Deep Neural Networks. Applied Sciences. 2024;14:4607. [7]Ambient Moisture‐Driven Self‐Powered Iontophoresis Patch for Enhanced Transdermal Drug Delivery. Advanced Healthcare Materials. 2024:2401371. [8]Path planning of rail-mounted logistics robots based on the improved dijkstra algorithm. Applied Sciences. 2023;13:9955. [9]Numerical characterization of transient electrohydrodynamic deformation and coalescence of single-core double emulsion droplets by AC field dielectrophoresis. Chemical Engineering Science. 2023;277:118877. [10]Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis. Applied Sciences. 2023;13:8253. [11]Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. Lab on a Chip. 2023;23:157-67. [12]Wireless and closed‐loop smart dressing for exudate management and on‐demand treatment of chronic wounds. Advanced Materials. 2023;35:2304005. [13]Liquid metal droplet motion transferred from an alkaline solution by a robot arm. Lab on a Chip. 2022;22:4621-31. [14]Numerical investigation of field‐effect control on hybrid electrokinetics for continuous and position‐tunable nanoparticle concentration in microfluidics. Electrophoresis. 2022;43:2074-92. [15]Alternating-current nonlinear electrokinetics in microfluidic insulator-decorated bipolar electrochemistry. Physics of Fluids. 2022;34:112002. [16]Numerical characterization of inter‐core coalescence by AC dielectrophoresis in double‐emulsion droplets. Electrophoresis. 2022;43:2141-55. [17]Fluid pumping by liquid metal droplet utilizing ac electric field. Physical Review E. 2022;105:025102. [18]Deep convolutional neural networks for regular texture recognition. PeerJ Computer Science. 2022;8:e869. [19]A visual portable microfluidic experimental device with multiple electric field regulation functions. Lab on a Chip. 2022;22:1556-64. [20]DC electric field-driven heartbeat phenomenon of gallium-based liquid metal on a floating electrode. Soft Matter. 2022;18:609-16. [21]Desktop-level small automatic guided vehicle driven by a liquid metal droplet. Lab on a Chip. 2022;22:826-35. [22]Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator. Nano Energy. 2021;89:106451. [23]Small universal mechanical module driven by a liquid metal droplet. Lab on a Chip. 2021;21:2771-80. [24]Continuous‐flow nanoparticle trapping driven by hybrid electrokinetics in microfluidics. Electrophoresis. 2021;42:939-49. [25]Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full‐scaled simulation study considering surface‐coupled electrocapillary two‐phase flow. Electrophoresis. 2021;42:950-66. [26]Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow. Analytica Chimica Acta. 2020;1096:108-19. [27]Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluidics and Nanofluidics. 2020;24:1-14. [28]Pumping of Ionic Liquids by Liquid Metal‐Enabled Electrocapillary Flow under DC‐Biased AC Forcing. Advanced Materials Interfaces. 2020;7:2000345. [29]Combined alternating current electrothermal and dielectrophoresis-induced tunable patterning to actuate on-chip microreactions and switching at a floating electrode. Sensors and Actuators B: Chemical. 2020;304:127397. [30]Liquid metal droplet-enabled electrocapillary flow in biased alternating electric fields: a theoretical analysis from the perspective of induced-charge electrokinetics. Journal of Micromechanics and Microengineering. 2020;30:085007. [31]A simulation analysis of nanofluidic ion current rectification using a metal-dielectric janus nanopore driven by induced-charge electrokinetic phenomena. Micromachines. 2020;11:542. [32]On ion transport regulation with field‐effect nonlinear electroosmosis control in microfluidics embedding an ion‐selective medium. Electrophoresis. 2020;41:778-92. [33]Multiple frequency electrothermal induced flow: theory and microfluidic applications. Journal of Physics D: Applied Physics. 2020;53:175304. [34]Buoyancy-free janus microcylinders as mobile microelectrode arrays for continuous microfluidic biomolecule collection within a wide frequency range: A numerical simulation study. Micromachines. 2020;11:289. [35]A novel fastslam framework based on 2d lidar for autonomous mobile robot. Electronics. 2020;9:695. [36]Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;599:124905. [37]A numerical investigation of enhancing microfluidic heterogeneous immunoassay on bipolar electrodes driven by induced-charge electroosmosis in rotating electric fields. Micromachines. 2020;11:739. [38]Efficient micro/nanoparticle concentration using direct current-induced thermal buoyancy convection for multiple liquid media. Analytical chemistry. 2019;91:4457-65. [39]Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow. Analytical chemistry. 2019;91:5729-38. [40]Experiment calibrated simulation modeling of crowding forces in high density crowd. IEEE Access. 2019;7:100162-73. [41]Optimization of passenger transportation corridor mode supply structure in regional comprehensive transport considering economic equilibrium. Sustainability. 2019;11:1172. [42]On hybrid electroosmotic kinetics for field‐effect‐reconfigurable nanoparticle trapping in a four‐terminal spiral microelectrode array. Electrophoresis. 2019;40:979-92. [43]A microscopic physical description of electrothermal‐induced flow for control of ion current transport in microfluidics interfacing nanofluidics. Electrophoresis. 2019;40:2683-98. [44]A novel temperature–hysteresis model for power battery of electric vehicles with an adaptive joint estimator on state of charge and power. Energies. 2019;12:3621. [45]An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis. Micromachines. 2019;10:135. [46]A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluidics and Nanofluidics. 2019;23:1-9. [47]Multifrequency induced-charge electroosmosis. Micromachines. 2019;10:447. [48]Compound‐droplet‐pairs‐filled hydrogel microfiber for electric‐field‐induced selective release. Small. 2019;15:1903098. [49]Effective joint DOA-DOD estimation for the coexistence of uncorrelated and coherent signals in massive multi-input multi-output array systems. EURASIP Journal on Advances in Signal Processing. 2018;2018:1-14. [50]On developing field-effect-tunable nanofluidic ion diodes with bipolar, induced-charge electrokinetics. Micromachines. 2018;9:179. [51]Flexible continuous particle beam switching via external-field-reconfigurable asymmetric induced-charge electroosmosis. Analytical chemistry. 2018;90:11376-84. [52]Online road detection under a shadowy traffic image using a learning-based illumination-independent image. Symmetry. 2018;10:707. [53]Flexible particle flow‐focusing in microchannel driven by droplet‐directed induced‐charge electroosmosis. Electrophoresis. 2018;39:597-607. [54]Induced-charge electrokinetics in rotating electric fields: A linear asymptotic analysis. Physics of Fluids. 2018;30:062006. [55]On ac-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing. Micromachines. 2018;9:102. [56]On the bipolar dc flow field-effect-transistor for multifunctional sample handing in microfluidics: A theoretical analysis under the debye–huckel limit. Micromachines. 2018;9:82. [57]Simulation analysis of rectifying microfluidic mixing with field‐effect‐tunable electrothermal induced flow. Electrophoresis. 2018;39:779-93. [58]On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: Physical perspectives and theoretical analysis. Journal of Micromechanics and Microengineering. 2018;28:055004. [59]Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks. Physics of Fluids. 2018;30:112003. [60]Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on a Chip. 2018;18:1121-9. [61]A high-throughput electrokinetic micromixer via AC field-effect nonlinear electroosmosis control in 3D electrode configurations. Micromachines. 2018;9:432. [62]Electric field-induced cutting of hydrogel microfibers with precise length control for micromotors and building blocks. ACS applied materials & interfaces. 2018;10:40228-37. [63]A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Analytical chemistry. 2017. [64]A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Physics of Fluids. 2017;29:112001. [65]Controllable rotating behavior of individual dielectric microrod in a rotating electric field. Electrophoresis. 2017;38:1427-33. [66]Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Physics of Fluids. 2017;29:112002. [67]Electrode cooling effect on out-of-phase electrothermal streaming in rotating electric fields. Micromachines. 2017;8:327. [68]Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS applied materials & interfaces. 2017. [69]On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels. Electrophoresis. 2017;38:983-95. [70]Sequential coalescence enabled two‐step microreactions in triple‐core double‐emulsion droplets triggered by an electric field. Small. 2017;13:1702188. [71]Simulation analysis of improving microfluidic heterogeneous immunoassay using induced charge electroosmosis on a floating gate. Micromachines. 2017;8:212. [72]Fluid flow and mixing induced by AC continuous electrowetting of liquid metal droplet. Micromachines. 2017;8:119. [73]Continuously electrotriggered core coalescence of double-emulsion drops for microreactions. ACS applied materials & interfaces. 2017;9:12282-9. [74]A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmotic prefocusing and dielectrophoretic separation. Analytical chemistry. 2017;89:9583-92. [75]Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis. 2016;37:1326-36. [76]Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics. 2016;10:054103. [77]Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip. 2016;16:2803-12. [78]AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range. Applied Surface Science. 2016;370:184-92. [79]Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping. Journal of Micromechanics and Microengineering. 2016;26:095003. [80]On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics. 2016;10:034105. [81]Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on a Chip. 2016;16:4313-8. [82]Induced-charge electroosmotic trapping of particles. Lab on a Chip. 2015;15:2181-91. [83]Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole–dipole interactions. Soft matter. 2015;11:8105-12. [84]One-dimensional Au–ZnO heteronanostructures for ultraviolet light detectors by a two-step dielectrophoretic assembly method. Acs Applied Materials & Interfaces. 2015;7:12713-8. [85]Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. Rsc Advances. 2015;5:5523-32. [86]A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. Journal of Physics D: Applied Physics. 2014;47:075501. [87]Homogenization of a variational problem in three-dimension space. Applied Mathematics and Computation. 2014;232:261-71. [88]Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system. Langmuir. 2013;29:12093-103.
科技成果1. 《非线性电动微流体力学及其微纳流控器件研究》,2022年度陕西高校科学技术奖,一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。 2. 授权软件著作权10余项。 3. 科技成果转让4项。
荣誉奖励1. 科技奖励:第1完成人获2022年度陕西高等学校科学技术奖一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。 2. 2015-2018年度先进科研工作者,长安大学,2019.05; 3.2019-2021年度先进科研工作者,长安大学,2022.04; 4.“长安学者”一类青年学术骨干,长安大学,2021.06; 5. 学科建设责任教授,长安大学,2020.06。 工作经历2023.12-至今,教授; 2018.11-2023.12,副教授; 2016.09-2018.11,讲师; |