个人资料
个人简介郭迪洲,男,汉族,籍贯江西信丰,1996年8月出生,中共党员,本硕博均就读于中国矿业大学,2023年4月至8月在香港理工大学担任研究助理,2024年6月获得大地测量学与测量工程博士学位,现为长安大学地质工程与测绘学院讲师,研究方向为多源遥感影像时空融合与质量重建,以第一作者及通讯作者身份发表7篇SCI论文,包括《Remote Sensing of Environment》、《IEEE Transactions on Geoscience and Remote Sensing》等高水平期刊,获得已授权发明专利4项。担任Geoscience and Remote Sensing Letters,Journal of Remote Sensing,International Journal of Digital Earth等期刊审稿人。曾获得2021年日内瓦国际发明展金奖,全球智慧城市峰会暨第三届国际城市信息学大会(GSCS & ICUI 2023)获最佳汇报奖,中国矿业大学优秀博士学位论文。 社会职务研究领域 遥感影像融合与重建,深度学习
开授课程科研项目面向秦岭地区全天候遥感精细监测的光学-SAR多模态影像时空融合方法研究,陕西省青年项目,2025-2026,主持 基于多源遥感影像时空谱信息融合的薄云-厚云-云阴影协同去除方法研究,陕西省博士后项目,2025-2026,主持 基于深度学习的时空无缝高空间分辨率遥感影像重建方法研究,中央高校基本科研业务费,2025-2026,主持 论文[1] Guo, D., Li, Z*., Gao, X., Gao, M., Yu, C., Zhang, C., & Shi, W.,RealFusion: A reliable deep learning-based spatiotemporal fusion framework for generating seamless fine-resolution imagery. Remote Sensing of Environment, 321, 114689.(中科院1区TOP) [2] Guo, D., Shi, W*., Hao, M., & Zhu, X. (2020). FSDAF 2.0: Improving the performance of retrieving land cover changes and preserving spatial details. Remote Sensing of Environment, 248, 111973.(中科院1区TOP) [3] Shi, W., Guo, D*., & Zhang, H. (2022). A reliable and adaptive spatiotemporal data fusion method for blending multi-spatiotemporal-resolution satellite images. Remote Sensing of Environment, 268, 112770.(中科院1区TOP) [4] Guo, D., Shi, W*., Zhang, H., & Hao, M. (2022). A flexible object-level processing strategy to enhance the weight function-based spatiotemporal fusion method. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-11.(中科院1区TOP) [5] Guo, D., Shi, W*., Qian, F., Wang, S., & Cai, C. (2022). Monitoring the spatiotemporal change of Dongting Lake wetland by integrating Landsat and MODIS images, from 2001 to 2020. Ecological Informatics, 72, 101848.(中科院2区TOP) [6] Guo, D., & Shi, W*. (2023). Object-Level Hybrid Spatiotemporal Fusion: Reaching a Better Trade-Off Among Spectral Accuracy, Spatial Accuracy and Efficiency. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,16:8007-8021.(中科院2区) [7] Guo, D., & Shi, W*. (2023). A task decoupled framework for enhancing the deep learning-based spatiotemporal fusion method. International Journal of Remote Sensing, 44(13), 4163-4189.(中科院3区) 科技成果荣誉奖励工作经历 2024.6-至今 长安大学 讲师
|