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Abstract

Hydraulic fracturing is widely applied for efficient coalbed methane (CBM) extraction, with microseismic monitoring providing critical insights into
the spatial distribution of fracturing zones. However, using only microseismic event locations may bias fracturing zone characterization, as some
areas can be aseismic. In this study, to better delineate fracturing zones, we use seismic attenuation anomalies by conducting microseismic
attenuation tomography. This study utilizes microseismic waveform data associated with two hydraulic fracturing wells for the CBM extraction in
a coal mine in Shanxi, China. First, the amplitude spectra of the P- and S-wave waveforms are used to determine t*, a path attenuation parameter
that represents the cumulative attenuation along the ray paths between events and stations and is related to the quality factor Q. Then, t* values
are used to invert for three-dimensional Q, and Qs models based on the existing velocity models and microseismic event locations, respectively.
In this study, microseismic events in the fracturing zones are associated with relatively high Q values compared to the shallower zones. Based
on previous laboratory studies, gas saturation zones are characterized by high Q anomalies. Therefore, we can use high Q areas around the
hydraulic fracturing wells to delineate effective fracturing zones, which are also associated with low V;, and high Vs anomalies. Our study shows
that microseismic attenuation tomography can be used to delineate the fracturing zones and to evaluate the gas saturation state for the case of
coalbed methane hydraulic fracturing.
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1. Introduction characterize the spatiotemporal distributions of fractures.
Additionally, monitoring microseismic activity can be help-
ful for mitigating potential induced seismicity risks related to
the activation of pre-existing faults by hydraulic fracturing,
thereby ensuring the safety of production activities (Ellsworth
2013; Chen et al. 2017; Miao et al. 2019; Blake et al. 2020;
Han et al. 2021; Wang et al. 2023; Wang et al. 2024).

Microseismic monitoring can be categorized into two types:
downhole monitoring and surface monitoring. For surface
monitoring, geophones or seismometers are deployed on the
surface around the fracturing wells. It has the advantage of
providing better spatial coverage for microseismic events and
thus they have higher horizontal accuracy than downhole
monitoring. However, it may have poorer capability of de-
tecting weak events because microseismic signals are heavily
attenuated by the soft sediments near the surface (Chambers
et al. 2010; Eisner et al. 2015; Alexandrov et al. 2020; Yang
et al. 2023; Mao et al. 2025).

Currently, microseismic monitoring relies on the micro-
seismic event locations to characterize the distribution of the
created fractures by hydraulic fracturing. However, due to the
weak nature of the microseismic signals, it is not possible to
identify and locate all of them (Miao et al. 2019). Moreover,
the location accuracy is subject to uncertainties in arrival
times and velocity models, which can introduce biases for
characterizing the distribution of fractures solely based on the
microseismic locations. In addition to microseismic locations,

Coalbed methane (CBM) is a type of unconventional hydro-
carbon gas resource (Wang 2012). Meanwhile, high concen-
tration of CBM is also considered a potential hazard for coal
mining. Therefore, CBM needs to be properly extracted for
the purpose of energy usage and safety concern. The extrac-
tion of CBM from the target coal beds depends on the per-
meability and gas saturation percentage, which affect the gas
migration rate and the ultimate recoverability of gas in the
reservoir (Moore 2012). To increase the permeability of reser-
voir, hydraulic fracturing has been widely used for unconven-
tional oil/gas reservoirs (Maxwell 2014; Jiang et al. 2016; Han
et al. 2021). For the hydraulic fracturing of CBM reservoir,
the fracturing well spacing needs to be properly set. If the well
spacing is too large, it can result in reservoir stimulation gaps
between adjacent wells, leading to the waste of CBM resources
and potential gas outburst risk. On the other hand, if the well
spacing is too small, it can cause excessive overlap of reser-
voir stimulation areas and unnecessary engineering expenses.
In addition, accurate delineation of effective reservoir stimu-
lation zone is also a significant part of CBM reservoir charac-
terization and management (Mohamed & Mehana 2020).
Hydraulic fracturing alters the pore pressure, stress, and
strain conditions within rocks, leading to rock fracturing ac-
companied by microseismic events (Ellsworth 2013; Maxwell
2014; Blake et al. 2020). By monitoring microseismic events
during the hydraulic fracturing process, we can effectively
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seismic tomography can also be used to characterize the
fracturing zones based on velocity changes due to fracturing.
For example, Chen et al. (2017) used downhole microseismic
monitoring data to image shale gas fracturing zones. Miao
et al. (2019) used surface microseismic monitoring array to
determine velocity changes caused by shale gas hydraulic
fracturing. Wang et al. (2023) utilized surface microseismic
monitoring array to characterize the coalbed methane fractur-
ing zones based on velocity anomalies. By combining velocity
anomalies and event locations, hydraulic fracturing zones can
be better delineated.

Arrival-time-based seismic location and tomography meth-
ods only utilize the kinematic information of seismic waves,
while neglecting their dynamic characteristics. In addition to
velocity structures (V, and Vi) obtained through the inversion
of arrival times, seismic attenuation structure can be used to
better delineate the existence of subsurface fractures and flu-
ids (Dutta & Odé 1979; Toksoz et al. 1979; Wu et al. 2014;
Blake et al. 2020).

The quality factor Q quantitatively represents the attenu-
ation strength of the subsurface medium. Q is defined as the
magnitude of energy attenuation during the propagation of
seismic waves over one cycle (Knopoff 1964), with Q inversely
proportional to the attenuation intensity. The observed ampli-
tude spectrum is affected by two types of attenuation mecha-
nism: intrinsic attenuation and scattering attenuation (Aki &
Chouet 1975; Frankel 1991). Intrinsic attenuation is the phe-
nomenon of irreversible energy dissipation of seismic waves
caused by the hysteresis of the medium during wave propa-
gation. It is mainly related to rock properties such as poros-
ity, pore density, pore shape, and fluid/gas saturation. Previous
studies, based on numerical simulations and rock physics ex-
periments, have shown that frictional sliding on the fracture
surface is the primary mechanism affecting intrinsic attenua-
tion in fractured rocks. Especially when the fractures are par-
tially or fully filled with fluids, elastic waves are further at-
tenuated (Dutta & Odé 1979; Johnston et al. 1979; Toksoz
et al. 1979; Peacock et al. 1994; Blake et al. 2020; Liao et al.
2023). On the other hand, scattering attenuation refers to the
seismic wave amplitude variations caused by focusing, defo-
cusing, and scattering during the wave propagation (Aki &
Chouet 1975; Toksoz et al. 1979; Frankel 1991).

Various seismic attenuation tomography methods have
been proposed to estimate the O models, including ray-
based 3D seismic attenuation tomography using direct waves
(Scherbaum 1990; Bennington et al. 2008; Pozgay et al. 2009;
Pesicek et al. 2011; Bisrat et al. 2014; Eisner et al. 2015; Barth-
wal et al. 2019; Blake et al. 2020), full waveform inversion
(Tromp et al. 2005; Zhu et al. 2013; Karaoglu & Romanowicz
2017), 2D Lg/Sg or Pn/Sn seismic attenuation (Nicolas et al.
1982; Campillo et al. 1984; Al-Damegh et al. 2004; Zhao &
Mousavi 2018), and surface wave attenuation tomography
(Dalton & Ekstrom 2006; Lawrence & Prieto 2011; Lin et al.
2012; Bowden et al. 2017). The ray-based methods using first-
arrival P- or S-waves, which we employ in this study, estimate
t* by fitting the seismic amplitude spectrum and then invert
for Q values. The primary advantages of ray-based methods
include high computational efficiency, and high-resolution Q
models in the region with dense ray coverage. However, they
rely on an accurate velocity model for raypath calculations
and do not fully account for frequency dependence or scatter-
ing effects (Aki & Chouet 1975; Scherbaum 1990; Benning-
ton et al. 2008). In contrast, full waveform inversion provides
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high-resolution attenuation models by simulating full wave
propagation, incorporating scattering and focusing effects,
but requires significant computational resources and high-
quality data (Tromp et al. 2005; Zhu et al. 2013; Karaoglu &
Romanowicz 2017). Regional phase attenuation tomography
(e.g. using Pn, Sn, or Lg waves) is effective for studying crustal
and upper mantle structures but suffers from limited depth
resolution (Campillo et al. 1984; Al-Damegh et al. 2004; Zhao
& Mousavi 2018). Surface wave attenuation tomography, al-
though capable of accounting for focusing-defocusing effects,
may face challenges in constraining vertical variations of deep
structures, as distinct frequency components exhibit varying
penetration depths (Lawrence et al. 2006; Lawrence & Prieto
2011; Lin ef al. 2012).

There have been some attenuation studies applied in the
geothermal development (Romero Jr et al. 1997; Guo &
Thurber 2021) and underground coal mining (Barthwal et al.
2019). However, currently there are few studies on how the at-
tenuation (Q) structure of the fracturing zone is changed com-
pared to the surrounding medium. Therefore, by applying seis-
mic attenuation tomography to microseismic monitoring data
caused by hydraulic fracturing of CBM reservoirs, it provides
a valuable opportunity to study attenuation properties of rock
formations under the gas-rich environment. Similar to using
seismic velocity anomalies to characterize the fracturing zone
(Wang et al. 2023), it is also possible to use seismic attenuation
anomalies to delineate the effective fracturing zone. Therefore,
in this study we aim to use microseismic data monitored by
the surface seismic array to determine the three-dimensional
(3D) attenuation structure for the fracturing zone of coalbed
methane, which is helpful for delineating the fracturing zone
and understanding reservoir properties. The inversion recov-
ers the total attenuation ( ;)ial = Q;ﬁmsic + Q;}zztering), and
separation of the two components requires additional data
analysis (e.g. coda waves; Aki & Chouet 1975).

2. Methods

One commonly used approach is first to directly invert for
the path attenuation term #* from the observed seismic am-
plitude spectrum using the first arrivals of P- and S-waves.
Then, using ray theory, the obtained #* values are used to
perform 3D tomography of O. By assuming a Brune source
model (Brune 1970) and utilizing the high-frequency decay
rate of the amplitude spectrum, ¢* and other source model pa-
rameters, such as the corner frequency and the low-frequency
amplitude spectrum level, can be simultaneously obtained by
fitting seismic amplitude spectra for many events and stations.
Once t* values are obtained, the attenuation structure can be
determined by calculating ray paths with a known 3D velocity
model (Scherbaum 1990; Bennington et al. 2008; Pozgay et al.
2009; Barthwal et al. 2019). In the following subsections, we
will briefly introduce the adopted seismic attenuation tomog-
raphy method, as shown in the flowchart in Fig. 1.

2.1. Spectrum fitting and t*
At an observation station j, the event amplitude spectrum Af]-bs
for event 7 can be represented as (Scherbaum 1990)

A7 =04 (1) S; (1 (F) B (£). (1)

where O;;(f), Sj(f), I;(f), and B;;(f) represent source spec-
trum, site response, instrument response, and path attenua-
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Figure 1. Flowchart of the adopted attenuation tomography method in this study.

tion term, respectively. These terms collectively influence the
observed amplitude spectrum. The instrument response can
be removed based on known instrument types. For the source
term O;;, the Brune source model can be used, and its expres-
sion in the far-field region is given by (Brune 1970):

2, (2)

()

where o, represents the low-frequency amplitude term for
event 7 and station j, which includes the influence of geometric
spreading, ff represents the corner frequency of earthquake
event i, and f represents the frequency value. The path atten-
uation term B;; can be expressed as

i

Tij

%:ﬁ@ﬂ:ﬂm, 3)

where T;j, Q;j, and t; represent the travel time, quality fac-
tor, and attenuation factor along the ray path, respectively. By
removing the instrument response and taking the natural log-
arithm of both sides of Equation (1), the observed amplitude
spectrum can be expressed as

In (4577 (£)) = In () = In (1 " (}{))

+ In(S; (f)) — 7 ft]. (4)

We can perform a joint inversion for all the observed am-
plitude spectra using Equation (4) to determine the unknown
parameters (Bennington ez al. 2008; Pesicek ef al. 2011; Aster
et al. 2018). The Levenberg-Marquardt method can enhance
our ability to accurately invert the spectral data for model pa-
rameters (Marquardt 1963; Aster et al. 2018). The unknowns
to be determined include the corner frequencies f; for each
event, the site effects S;(f) beneath each station, the low-
frequency amplitude levels Q, and attenuation factors ¢; for
each station and each event.

We used a four-step alternating inversion scheme designed
by Pesicek et al. (2011) that iteratively updates poorly con-
strained parameters while keeping other parameters fixed. In
the first step, initial site effects beneath each station are de-
termined based on an assumed value for t*. During the it-
eration process, higher damping is applied to #*, Qo, and f.
parameters to prioritize the update of the site effects. In the
second step, a grid search is performed within a certain fre-
quency range using the updated values of other parameters
after the first step, aiming to find the best-fitting f. for each
event. The grid search approach helps to reduce the coupling
between the corner frequency and #* during the inversion pro-
cess. In the third step, a direct linear inversion is applied to ¢
using the exponential form of Equation (4) after updating the
other parameters. Finally, in the fourth step, the final iteration
of the joint inversion is performed to determine the final ¢*
values. In this process, higher damping parameters are set for
the other model parameters. Additionally, the joint inversion
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Figure 2. The plan view of surface geophones and two hydraulic fracturing well locations. The surface geophones are represented by blue triangles, and

the hydraulic fracturing wells are represented by red squares.

is applied again instead of independently to update ¢t* values
to ensure the best fitting between theoretic and observed am-
plitude spectra.

Lees & Lindley (1994) solved for a 3D Q model by sum-
ming frequency-dependent Q,i.e. O = Qg . They found that
even when ignoring frequency dependence, the Q model ex-
hibits similar structures, and it is believed that frequency
mainly influenced the absolute value of Q but not its spatial
variations (Guo & Thurber 2021). Therefore, we assume that
t* values and Q are independent of frequency in the inversion.

2.2. Attenuation tomography method

After obtaining t*, if we have already determined the veloc-
ity model and earthquake locations, we can invert for the Q
model using the following relationship (Thurber & Eberhart-
Phillips 1999):

1 1
= ds. 5
‘ /Q(x,y,z)V(x,y,z) § (5)

N

Based on the Equation (5), we can perform the inversion us-
ing the least-squares method by minimizing the misfit between
observed and calculated #* values, thereby obtaining the O
structure. For the attenuation tomography system, smooth-
ing and damping are needed to regularize the inversion sys-
tem, with optimal parameters selected by the trade-off anal-
ysis (Aster et al. 2018). The selected parameters ensure a
balance between model length/smoothness and data fitting
in the inversion process. Before the 3D inversion, we deter-
mine a homogenous QO value for the entire region that best
fits all #* values, which is called Qini and used as the initial

QO model.

3. Data

In this study we use surface seismic monitoring data of two
hydraulic fracturing wells (j5 and j6) in a coal mine located in
Shanxi, China. The targeted coal seams are from the Taiyuan
Formation in the Carboniferous system, located at depths
ranging from 500 to 600 m below the surface. The average
thickness of the coal seams is 3.33 m. A total of 19 geophones
were deployed in the field within a 600-m radius centered
around the wellhead, forming a circular microseismic mon-
itoring network with geophones located along radii of 200,
400, and 600 m (Fig. 2). The average elevation of the stations
is 1273.5 m above the mean sea level. These geophones were
installed in shallow holes of 10 to 20 m deep to improve the
signal to noise ratio of the data, with the sampling frequency
of 1000 Hz. The hydraulic fracturing reservoir depth for well
j5 ranges from 765 to 762 m above the mean sea level (MSL),
while for well j6 it ranges from 735 to 733 m above the MSL
(Fig. 3).

During the hydraulic fracturing process, a total of 346 mi-
croseismic events were detected. These events have magni-
tudes ranging from —1.0 to —2.0. The waveforms are char-
acterized with weaker P-wave energy and relatively stronger
S-wave energy. The waveform duration of the detected events
is ~4 seconds, with the main frequency falling within the
range of 40-50 Hz.

4. Seismic attenuation analysis

In a previous study, Wang et al. (2023) has conducted seismic
velocity tomography using these 346 events by the double-
difference seismic tomography method (tomoDD; Zhang &
Thurber 2003). The relocated microseismic events for two
wells are spatially independent and overall have a north—-south
distribution in the horizontal directions with a vertical extent
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Figure 3. Earthquake locations using TomoDD. (a) Map view of the event locations. (b) Side view of the event locations. Stations are marked with blue
triangles, and the wells are marked by red squares. Target reservoirs are marked with green rectangles.

exceeding 300 meters. For well j5, the microseismic events are
primarily distributed on the eastern side of the fracturing well
and below the fracturing zone. On the other hand, for well j6,
the microseismic events are mainly distributed on the western
side of the fracturing well. They extend both above and be-
low the fracturing depth, with a greater extension below. The
asymmetry in the microseismic event distribution may be at-
tributed to deviations in the perforation locations (Maxwell
et al. 2010) or variations in rock properties near the hydraulic
fracturing well (Fisher & Warpinski 2012). In this study, we
first calculate the t* values for P- and S-waves using the re-
spective waveforms. Subsequently, we conduct the attenuation
tomography to determine the 3D Q, and Qs models.

First, we invert Qo, f, t*, and site effects simultaneously
using the amplitude spectra for all earthquakes observed at
all stations (Bennington et al. 2008; Pesicek et al. 2011; Bisrat
et al. 2014). We calculate the P- and S-wave amplitude spec-
tra within a time window of 0.128 seconds covering the first-
arrival P- and S-waves (0.02 seconds before and 0.108 seconds
after the first arrival time) and the noise spectra within a time
window of the same length preceding the P-wave arrival time.
To avoid contamination from S-wave signals, only waveforms
with S-P arrival time differences >0.13 s are used. We calcu-
late the SNRs of amplitude spectra at each frequency between
20 and 500 Hz, and only those exceeding a threshold of 3 for
at least 50 frequencies are selected.

The initial * values correspond to O, = Qs = 100, based
on experimental Q measurements (Murphy lii 1982; Blakeslee
et al. 1989; Chapman et al. 2006). The initial value for the
site effect is set to 1, indicating no site effect. In Equation (5),
the initial value of the corner frequency f., can be estimated
using an empirical relationship for the corner frequency and
the earthquake magnitude M,,, as follows (Chen & Bai 1991;
Hu 2020):

10810 £ = —0-333 x My, + 1.75. (6)

The amplitude spectra fitting results are shown in Fig. 4,
and the fitting value (“fit” in Fig. 4) is determined based on the
root mean square (RMS) error of the spectral fitting process.
The range from 0 (best) to 4 (worst) corresponds to a ranking
system, where lower values indicate better agreement between
the observed and calculated spectra. By exclusively selecting
fitting values of 0, 1, and 2, we obtain a total of 5313 ¢* values
for P-waves and 5205 t* values for S-waves. Most of these
values are smaller than 0.015 s. Notably, the #* values for S-
waves are slightly larger than those for P-waves. Specifically, P-
wave t* values are predominantly distributed between 0.005
and 0.01 s, while S-wave ¢* values mainly fall within the range
of 0.007 to 0.012 s (Fig. 5).

The distribution of corner frequency (f.) with respect to
magnitude (Mw) is shown in Fig. 6. The magnitude (Mw)
is distributed within the range of —1 to —2, while the cor-
ner frequency (f.) spans a wide range from 100 to 400 Hz.
A clear linear relationship is observed between them with .
increasing when Mw decreases, which is consistent with pre-
vious studies (Chen & Bai 1991; Allmann & Shearer 2009;
Eisner et al. 2015; Hu 2020). According to the empirical for-
mula relating f. and stress drop (Ao) (Eisner et al. 2015), mi-
croseismic events in this study have a stress drop ranging from
0.05 to 0.5 MPa, which is smaller than tectonic earthquakes.
This could be due to the reduced normal stress by elevated
pore fluid pressures on fault planes (Huang et al. 2017). The
observed variations in stress drop may be influenced by vari-
ations in source geometry, rupture speed, and local velocity,
as well as uncertainties in the corner frequency (Kaneko &
Shearer 2014; Huang et al. 2017; Abercrombie 2021).

After obtaining the ¢* values, we performed seismic atten-
uation tomography of Q, and Qs using the modified double-
difference seismic tomographic system (Zhang & Thurber
2003; Bennington et al. 2008; Pesicek et al. 2011; Bisrat et al.
2014; Hu 2020; Guo & Thurber 2021). First, we determine
homogeneous Q, and Q; values to serve as initial values for
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Figure 4. Examples of amplitude spectrum fitting for the (a) P-wave and (b) S-wave are presented for waveforms from a single event recorded at multiple
stations. The upper panel displays the recorded waveforms for each station, with the P-wave shown as the vertical component (Z component) and the
S-wave as the horizontal component (N component). The lower panel illustrates the results of the spectrum fitting. Here, the dark blue solid line
represents the observed amplitude spectrum, the gray dashed line represents the noise spectrum, and the red solid line represents the calculated

amplitude spectrum based on inversion results.
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Figure 5. Histograms of estimated t* values for (a) P-waves and (b) S-waves.

the inversion. We test a range of values from 0 to 150 in in-
crements of 5 and find that Q, = 40 and Q = 50 correspond
to the minimum RMS residuals for #p* and #s*, respectively
(Fig. 7). These values were selected as they provide the best fit
to the observed data, as demonstrated in Fig. 7.

For the 3D inversion, the coordinate system is chosen with
the x-axis along the east-west direction and the y-axis along
the north-south direction. Here we used a multi-grid inver-
sion strategy by first setting a coarser inversion grid and then

(b)

2000+

1500 1

Count

1000 1

500

0- y . -
0.000 0.005 0.010 0.015 0.020 0.025 0.030

ts

a finer inversion grid. For the coarser inversion grid, the grid
spacing is set as 100 m in both the x and y directions within
a range of —900 to 900 m, and in the depth direction, the
grid nodes are set at z = —1400, —1100, —800, —700, —600,
—400, and 0 m, where 0 m represents the MSL (positive down-
ward). 10 and 12 iterations were performed separately for P-
and S-waves and the final #* residuals are mostly concentrated
within 0.005 s with a Gaussian-like distribution (Fig. 8). For
the finer inversion grid, the grid spacing is set as 50 m in both
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Figure 7. Selection for homogenous (a) Q, and (b) Qs values corresponding to the minimum RMS t* residuals. The red dots indicate the chosen Q values.

x and y directions, and in the depth direction the grid nodes
are finer with the grid spacing of 50 m in the depth range
of —600 to —800 m. The initial Q, and Qs models for the
finer inversion grid are the final inverted O, and Qs models
from the coarser grid inversion. The final RMS #p * residual de-
creases from 0.00136 to 0.00109, and ts* residual decreases
from 0.00171 to 0.00138.

To assess the model resolutions for both coarser and finer
inversion grids, we have conducted a conventional checker-
board test. In this test, a model with alternate positive and neg-
ative 5% anomalies were generated on the average Q model
(Figs 9 and 10). It can be seen that the Qp and Qs models ex-
hibit higher resolutions in the depth range of —600 to —800
m where the microseismicity is densely distributed. However,
the resolution is relatively lower at shallower depths where
the ray coverage is poorer. The checkerboard test shows that
under the current data distribution both Q, and Qs anomalies
with size between 50 and 100 m can be well resolved.

Vertical sections of 1000/Qp and 1000/Qs models from
coarse-grid inversion are shown in Figure 11, respectively.
Figures 12 and 13 show vertical profiles of the inverted Q,
and Qs models with the finer inversion grid at y = —0.1, 0,
and 0.1 km, using the coarse-grid results as the initial model
(Fig. 11), and they are compared with V,, and V; models along
the same profiles. Similarly, we also show the inverted Q,, and
O, models with the finer inversion grid at x = —0.1, 0, and
0.1 km, respectively (Fig. 14). For O, and O, models, although

they are inverted separately, they still exhibit a high degree
of similarity. Overall, microseismicity is associated with high
Oyp and Qs values. The two distinct microseismic clusters are
nearly vertically aligned, and their spatial extension can be
used to delineate fracturing zone geometry, as demonstrated
by Wang et al. (2023). Both fracturing zones are primarily lo-
cated within regions exhibiting low V, high Vi, and high O,
and Q, anomalies, with these anomalies aligning vertically as
well. Additionally, low V,, Vi, O, and Qs anomalies appear
above the fracturing zones, indicating a significant transition
in rock properties. This abrupt change in rock properties likely
marks a boundary between different rock formations or fluid
saturation states. Furthermore, the shallow low-velocity and
low-Q anomalies extending toward the surface are suggested
to correspond with unconsolidated near-surface sediments.

5. Discussion

In our study, by seismic attenuation tomography using in-
verted ¢* values, we have determined Q, and Q, models for
the target hydraulic fracturing reservoirs. It is clear that both
O, and Qg show high values around the fractured reservoirs
(Figs. 12-14). In comparison, V|, shows low anomalies while
Vs shows high anomalies (Figs. 12 and 13). It is known that
by hydraulic fracturing, fractures will be created in the target
reservoirs, which can be filled with fluids as well as extracted
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residuals for P-wave after inversion. (b) Variation of RMS t* residuals for P-wave with iterations. (c) Histogram of t* residuals for S-wave after inversion.
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coalbed methane. Therefore, the observed attenuation and ve-
locity anomalies are affected by created fractures and filled
fluids and gases.

Previous studies have indicated that the closure of micro-
cracks with increasing effective stress can lead to a reduc-
tion in attenuation for P- and S-waves in both dry and sat-
urated sedimentary and igneous rocks (Johnston et al. 1979;
Johnston & Toks6z 1980). In comparison, when pores and in-
duced fractures are partially or fully saturated with fluids, the
propagating elastic waves can be attenuated (Liao et al. 2023).
It is generally agreed that the dominant cause of attenuation
in fluid-saturated porous rocks is the viscous fluid-solid inter-
action (Toksoz et al. 1979; Johnston & Toksoz 1980; Murphy
lii 1982). Numerical simulations by (Dutta & Odé 1979) on
porous rocks under fluid saturation conditions demonstrated

significant changes in acoustic properties and attenuation of
elastic waves when a small amount of gas is present in brine-
saturated rocks. The P-wave is mostly attenuated when gases
are at an intermediate saturation state. Wu et al. (2014) pro-
posed a two-layer model and analyzed the variation of P-
wave attenuation with gas saturation under different porosi-
ties. The results indicate that attenuation is lowest when the
gas is fully saturated and reaches its maximum at intermediate
saturation levels. Liu et al. (2012) conducted ultrasonic test-
ing on carbonate rocks with different gas saturation levels and
found that longitudinal wave attenuation increases initially
and then decreases with increasing gas saturation level, while
transverse wave attenuation decreases linearly with increas-
ing gas saturation level. Similar results have been reported
in other laboratory measurements (Murphy Tii 1982; Wulff
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& Burkhardt 1997; Amalokwu et al. 2014; Caspari et al.
2014).

Therefore, the imaged high O, and Qg values, or lower
attenuation in and around target reservoirs are most likely
caused by gas saturated fractures. However, the central por-
tion of the Q, and Qs models (y = 0) corresponds to an
area with fewer recorded microseismic events, suggesting less-
fractured zones. This phenomenon may indicate lower gas sat-
uration near the edges of the fracturing zones and lower Q
compared to the zones with microseismic events along profiles
aty=0.1and y = —0.1 km. The existence of high Q values in
the fractured zones suggests that intrinsic attenuation reduc-
tion, most likely due to gas saturation, outweighs scattering

losses. Furthermore, at x = 0 km in the y = 0 km profiles, the
absence of microseismicity aligns with high velocity anomalies
and high Q, and Qs values. This implies structurally intact,
less-fractured rock formations within the central zone, likely
unaffected by hydraulic stimulation. Thus, we can use high O
(low attenuation) anomalies to characterize the gas saturation
zones caused by hydraulic fracturing, which are located in the
range of x,y = —0.2 t0 0.2 km and z = —0.4 to —0.8 km. The
presence of fractures and fluids typically results in a reduction
in both V,, and Vi. However, for gas-filled fractures, they in-
duce a significant V, reduction due to the abrupt drop in bulk
modulus. In contrast, V exhibits a distinct behavior: the shear
modulus (u) remains largely unaffected by the gas inclusion

920z Alenuer gz uo Jasn AyisiaAlun ue,bueyd Aq 9068/ 18/82€1/S/zz/21onue/ebl/woo dno-oiwspeoe)/:sdyy woly papeojumoq



1000/Qp X=-0.1km

\

-1.2 -1.2
g -1 -1t
N -0.8 -0.8

-0.6 -0.6

0.5

1000/Qs X=-0.1km

1000/Qp X=0km
¥

L o/

1000/Qs X=0km

Wang et al.

1000/Qp X=0.1km

4

14
12}

-1r
08}
0.6

0.5

-0.5 0 0.5

1000/Qs X=0.1km

-l4y -1.4

' ' Ad

E‘ -1
N

N - -0.8

-0.6

-0.5 0 0.5 -0.5 0
Y(km) Y(km)

0.5 0 0.5
Y(km)

0.5

Figure 14. Vertical sections with a finer inversion grid of (a) 1000/Q, and (b) 1000/Qs models at x = —0.1, 0, and 0.1 km. Black dots denote seismic

events within 25 m along the profile in the x-direction.

(a) Isosurface Qp=50

-1.4

-1.2
~ -1
g
< -08

-0.6

0.5
0.5
0
0
Y(km) -0.5 -0.5 X(km)

Z(km)

(b) Isosurface Qs=60

-1.4 <
-1.2

-1
-0.8
-0.6

0.5

0.5
0
0
-0.5 %
Y (km) 0.5 X(km)

Figure 15. The distribution of high Q anomalies near the fractured reservoirs delineating effective fracturing zones. (a) Q, = 50 isosurface. (b) Qs = 60
isosurface. In each figure, the two black lines delineate the two hydraulic fracturing wells. The blue regions depict the isosurfaces of Q, = 50 and
Qs = 60 with low V;, (<3 km/s), highlighting areas of low seismic attenuation, while the red dots illustrate microseismic events.

while the density decreases, leading to an increase in V; and
a reduction in the V,/V; ratio (Toksoz et al. 1976). High O,
and Qs zones are consistent with observed low V}, and high
Vs anomalies, which are caused by high gas saturation levels.

In the attenuation model, above —0.8 km there are rel-
atively high attenuation anomalies extended to the surface
and widely distributed horizontally (low Q, and Qs values;
Figs 12-14), which may be attributed to loosely consolidated
sediments in the shallow region. Based on the widespread low-
velocity and low-Q anomalies down to a depth of z = —1.0
km, the thickness of the sedimentary layer can be estimated to
be ~400 m.

For hydraulic fracturing, it is important to characterize the
fractured zones to assess the future production potential of
reservoirs. In general, the volume covered by microseismic

events induced by hydraulic fracturing is used for this pur-
pose. However, the effective fracturing stimulation volume es-
timated solely based seismicity distribution could be biased
(Zimmer 2011). As seen in Figs 12 and 13, high O, and O,
zones around the target reservoirs, which could be treated as a
proxy for effective stimulation reservoir volume, are not con-
sistent with the microseismicity distribution. For example, in
the O, and Qj vertical sections along y = 0.1 km, there is little
seismicity within high Q, and Qs zones to the right of x = 0
(Figs 12 and 13). Therefore, we can use attenuation anoma-
lies to better delineate fracturing zones by extracting high O,
(Qp = 50) and high Q; (Qs = 60) isosurfaces (Fig. 15). Con-
sidering that intact or unfractured rock formations also show
high O values, here we combine the V,, model to create high
O, and Qs isosurfaces delineating fracturing zones. For gas
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saturation zones, the associated V, values are low. Therefore,
only high O, and Qs zones with low V,, values represent ef-
fective fracturing zones with high gas content. We see from
Fig. 15 that the high O anomalies extend outward from the
bottom of the two fracturing wells into the surrounding areas.
Notably, the seismic events are predominantly located within
the high O anomaly zones. This spatial correlation suggests
that the fractures are saturated with gases, indicating the re-
lease of a large amount of CBM from target reservoirs.

The microseismic attenuation tomography method used
in this study can also be applied to assess the fracture dis-
tribution for other unconventional oil/gas resources such as
shale gas, tight oil, and hot dry rock system developed by
hydraulic fracturing (e.g. Aki et al. 1982; Adam et al. 2009;
De Siena et al. 2010; Li et al. 2016). However, this method
has some limitations. If microseismic monitoring stations are
not well distributed, the attenuation model resolutions may
be poor, especially in the region where the ray path coverage
is sparse. In addition, the inverted Q models may also con-
sist of scattering attenuation, and coda wave analysis is need
to separate it from the intrinsic attenuation (Aki & Chouet
1975).

6. Conclusions

By using #* values inverted from seismic waveforms from mi-
croseismic events induced by coalbed methane hydraulic frac-
turing, we have determined 3D Q, and Q, models for the
target coal beds by the attenuation tomography. Seismic at-
tenuation Q,, and O, models exhibit a high degree of similar-
ity. Around the target coal reservoirs, both Q,, and Qs exhibit
pronounced high values, which are interpreted due to high
gas saturation based on previous rock physics experiments.
These high QO values are associated with low V,, and high V;
anomalies, consistent with the scenario of gas saturated frac-
tures. Overall, high O,, high Q;, low V}, and high V, zones
around the fractured coalbed reservoirs are consistent, which
are caused by high saturation of coalbed methane in the frac-
tures created by hydraulic fracturing. The results suggest that
these models are reliable and can be used to assess the effective
stimulated reservoir volume.
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