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H I G H L I G H T S  

• Dual electromagnetic meachanisms enable watt-level output power. 
• Pendulum swinging amplitude is restricted with even larger ouput power. 
• Internal resonance for frequency up-conversion is realized.  
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A B S T R A C T   

Ultra-low frequency vibration in ambient environment is an abundant renewable energy source. Corresponding 
energy harvesters have attracted increasing attention from both academic and industrial worlds. In this paper, a 
rotational electromagnetic energy harvester (EMEH) and a translational EMEH are combined into a spring 
pendulum system, thus forming a dual EMEH, in which internal resonance phenomenon is triggered to result in 
significantly enhanced energy harvesting efficiency. The spring pendulum system exhibits robustness and sta
bility with the equivalent electromagnetic shunt damping constraints. Meanwhile, the tunable damping pre
serves the integrity of the system even the external excitation overloads. Experimental results demonstrate that 
the output power of the dual EMEHs can reach up to 0.9 W with a moving mass of 1.42 kg. Moreover, the swing 
angle of the pendulum can be reduced with the effect of internal resonance, which protects the main system and 
ensures its operation in harsh operating environment.   

1. Introduction 

Ocean wave oscillation is a typical ultra-low frequency vibration 
source, which contains abundant energy that can be harvested. Scruggs 
and Jacob [1] analyzed the considerable amount of power contained in 
ocean waves and stated the engineering challenges for harvesting en
ergy. Aderinto and Li [2] assessed the ocean wave energy resource, 
reviewed commonly used wave energy extraction technologies, and 
discussed challenges for industrial application. On the same topic, Sun 
et al. [3] reviewed the existing enhancement techniques of various en
ergy harvesters. As for the harvesting principles, the piezoelectric en
ergy harvester (PEH) [4], the electromagnetic energy harvester (EMEH) 
[5], the triboelectric nanogenerators (TENG) [6], and various combi
nations of the three kinds of harvesters [7] with proper interface circuit 

[8] were extensively exploited and widely used by both researchers and 
industrial practitioners. Different structural design and optimization 
methods are proposed to reach high efficiency of ultra-low frequency 
vibration energy harvesting, including the quasi-zero-stiffness (QZS) 
technique, multistable energy harvesters, pendulum structures, etc. 

QZS technique is one of the most researched topics recently for 
various applications including vibration isolation [9–12]. QZS-based 
energy harvesting [13,14] recently emerged as a hot topic, such as 
bio-inspired QZS energy harvesters [15,16], bi-objective QZS designs 
with simultaneous vibration control and energy harvesting function 
[17], etc. The latter was reviewed by Chen et al. [18], commenting on 
different bi-objective QZS designs realized in recent years. Multistable 
vibration energy harvester is another hot research topic for ultra-low 
frequency energy harvesting. Corresponding research ranges from 
monostable systems to bistable, tristable, and multistable systems. The 
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main purpose is to ensure effective operation of the harvesters subjected 
to ultra-low frequency excitations. In this regard, Fan et al. [19] 
designed a monostable system with special magnet arrangement, which 
can effectively lower the PEH response to a lower frequency range. 
Erturk and Inman [20] proposed a bistable Duffing oscillator to obtain 
high-energy orbits without resonance consideration. Zhou et al. [21–23] 
designed several bio-inspired bow-type bistable PEHs, with corre
sponding effective low working frequency verified by experiments. Liu 
et al. [24] developed a bistable nonlinear stiffness identification method 
to predict and enhance the system working performance. A broadband 
tristable energy harvester was also modeled and experimentally verified 
[25]. While most above harvesters were designed in symmetric struc
tural form, the asymmetric type bistable [26] and tristable energy har
vesters [27] were also analyzed, and corresponding high-energy orbits 
were compared with the symmetric structures. For multistable energy 
harvesters, Zhou et.al [28,29] reviewed the state-of-art progress in 
modeling principles, performance enhancement, and design methods. 
Alternative designs without external magnets [30], calculating methods 
of magnetic force [31], multistable energy harvesters with rolling 
magnets [32], and pendulum [33] were also considered in view of 
enhancing the performance of multistable energy harvesters. Recently, 
more diversified energy harvesting structures were proposed to harvest 
the ultra-low frequency vibration energy. For example, Song et al. [34] 
proposed two tandem cylinder PEHs to harvest water flow energy. With 
a gravity-driven roller, Zhao et al. [35] used a bio-inspired structure to 
cope with the ultra-low frequency vibration energy, and used the har
vested energy to power ocean environment monitoring sensors. Shen 
et al. [36] used inerter-based EMEH to mitigate the vibration of a bridge 
stay cable, and achieve simultaneous vibration energy harvesting in the 
system. Tan et al. [37] proposed a string-suspended rotor to implement 
the frequency up-conversion mechanism that leads to a significant 
enhancement of energy harvesting efficiency. Ma et al. [38] leverage the 
magnets-enabled snap-through phenomenon to achieve the vibration- 
rotation modulation. 

Moreover, the ultra-low natural frequency feature of the pendulum- 
like structure is potentially conducive to ultra-low frequency vibration 
energy harvesting. Typical designs include planar pendulum [39], 
spherical pendulum [40], double pendulum [41], etc. Wang [42] 
reviewed the research progress on pendulum-based energy harvesters. 
Design types, modulation mechanisms, transducer selections, charac
teristics, performance, and applications were objectively compared 
among different pendulum harvesters. Meanwhile, internal resonance 
principle has been widely investigated to reach a wider working band 
and higher frequency range for energy harvesting. Related works 
include Chen and Jiang [43] which utilized the internal resonance 
phenomenon to fabricate an EMEH with snap-through nonlinearity. 
Clamped-clamped beams with a mounted oscillator [44] were regarded 
as a typical case for internal resonance harvesting. Cantilever pendulum 
structure [45] was also proved effective in collecting multi-direction 
excited vibration energy. Double beams were utilized to achieve inter
nal resonance in which the energy of the main beam can be transferred 
into the auxiliary beam [46,47]. 

Combining the pendulum and internal resonance phenomenon, the 

spring pendulum proves to be an effective design for ultra-low frequency 
vibration energy harvesting. Compared with aforementioned beam- 
based internal resonance harvesters, a simple spring pendulum, as a 
nonlinear structure, can be applied in real engineering sites more easily. 
Corresponding modeling and response characteristics have been pro
posed and investigated for a long time. For example, Kane and Kahn [48] 
obtained the resonance boundary conditions and studied characteristics 
of resonant oscillations. Narkis [49] and Miles [50] analyzed the spring 
pendulum stability and verified the 1:2 internal resonance phenomenon. 
Broucke and Baxa [51] gave the periodic solutions of a spring pendulum 
with periodic orbits methods. Gitterman [52] investigated the spring 
pendulum system response with parametric excitation and external 
force. Recently, some new modeling and analysis methods for spring 
pendulum motion solutions are still emerging. Baleanu et al. [53] used 
the fractional model to describe the spring pendulum motion, which can 
excavate more hidden information of the physical world. Abohamer 
et al. [54] analyzed the steady-state asymptotic motion response and 
stability with both piezoelectric and electromagnetic devices. Souda 
et al. [55] explored the energy distribution of the spring pendulum 
system to propose the global characteristics of the spring pendulum 
energy exchange by considering a great number of trajectories. Amer 
et al. [56,57] used the multiple scales method to explore the chaotic 
response of a circular spring pendulum with harmonic excitation. Even 
for a simple nonlinear system, the uncertain dynamics deserve further 
exploration. 

Referring to energy harvesting with the spring pendulum, more and 
more research has been conducted currently due to its ultra-low fre
quency applicability. Kecik and Borowiec [58] explored the auto- 
parametric response of a pendulum with vertical excitation, and pro
posed simulation results for various pendulum motion types. Mitura and 
Kecik [59,60] analyzed the parameters that influence the energy har
vesting efficiency and conducted experiments to verify the theoretical 
results. Jiang et al. [61] evaluated the improvement of bandwidth with 
the analysis of the nonlinear behavior. To harvest the ultra-low fre
quency vibration energy, Wu et al. [62] designed a multi-direction 
spring pendulum like PEH by capitalizing on 1:2 internal resonance, 
then a 1:2:6 frequency up-conversion mechanism [63] was used to 
obtain higher energy harvesting efficiency. The spring pendulum system 
with internal resonance phenomenon can also be regarded as a rota
tional mutation of the translational dynamic vibration absorber (DVA). 
He et al. [64] used multiple scales method to obtain the bi-objective of 
vibration control and energy harvesting with precise results. Kecik and 
Mitura [65–67] then studied the pendulum absorber with simultaneous 
energy harvesting function, corresponding experiments were conducted 
to verify the energy harvesting performance without decreasing the vi
bration reduction effectiveness. 

With the aforementioned spring pendulum based energy harvesters, 
the increase in the effective bandwidth is clear, and the vibration miti
gation performance can also be guaranteed with properly designed 
structural parameters. However, the achieved harvested energy is still at 
the milliwatt level (mW), which can only be used to power some low- 
power sensors. When used for more power-demanding electrical appli
ances, the harvested energy is usually not enough, particularly for the 
offshore operating environment with limited power supply. To tackle 
this problem, this paper proposes dual EMEHs with internal resonance to 
harvest ultra-low frequency (lower than 1 Hz) vibration energy. The 
contribution of this work is mainly twofold: (1) realization of high 
output power up to Watt level with high energy density; (2) containment 
of the pendulum swing amplitude to a relatively low level. 

The proposed system is designed for ocean wave energy harvesting, 
particularly for the buoy internal installation. The ocean wave excitation 
features ultra-low frequency and large amplitude for which the proposed 
pendulum structure can then take the best advantage. Moreover, the 
spring pendulum system is shown to be effective in improving the output 
frequency without complex structural design. In the following sections, 
the design and the modeling of the proposed mechanism are illustrated 

Nomenclature 

DAS Data acquisition station 
DOF Degree-of-freedom 
EMEH Electromagnetic energy harvester 
FFT Fast Fourier transform 
PEH Piezoelectric energy harvester 
QZS Quasi-zero-stiffness 
TENG Triboelectric nanogenerators  
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in Section 2. Experimental setup and parameter identifications are given 
in Section 3. Then the results are discussed in Section 4. Section 5 
summarizes the main conclusions. 

2. Design and modeling 

In this section, the proposed dual EMEHs in a spring pendulum 
structure with internal resonance alongside an EMEH in a single 
pendulum structure used as a comparison are illustrated. Corresponding 
models with rotational damping are established to predict the two kinds 
of motion trajectories and output voltage. 

2.1. EMEH with internal resonance 

A rotational EMEH and a translational EMEH are combined in a 
spring pendulum structure as shown in Fig. 1(a). The rotational EMEH, 
later labeled as H1, is composed of a gearbox for frequency up- 
conversion, a permanent magnet DC motor that is used for electricity 
generation, and a tunable potentiometer for changing the load resis
tance. The rotating shaft of the gearbox is connected to the pendulum 
axis so that the swing energy can be harvested into the rotational EMEH. 

The translational EMEH, later labeled as H2, is a specifically designed 
electromagnetic transducer with opposing magnet pairs to achieve 
maximum transduction factor. The number of opposing magnet pairs is 
optimized as four to reach the highest electromechanical coupling per
formance with the structural parameter’s limitation [68]. The coil is 
fixed at the pendulum axis, while the opposing magnet bar is connected 
with the pendulum axis through a spring, while the other end is hanging 
a counter-weight mass. Therefore, the dual EMEHs contain two energy 
sources, H1 and H2, which can be simplified as a two degree-of-freedom 
(DOF) system as shown in Fig. 2(a). With a horizontal excitation, the 
swing pendulum drives H1 to rotate and H2 to vibrate in the radial di
rection. As a result, both EMEHs can harvest the ultra-low frequency 
vibration energy, whose efficiency can be maximized through a proper 
tuning of the natural frequencies of the system by adjusting the swing 
pendulum and spring-mass parameters. 

Moreover, the comparative single pendulum harvester in Fig. 1(b) is 
a one DOF system with the magnets and coils of H2 fixed together. With 
an external excitation, the system will only swing so that H1 can work 
and harvest energy, but H2 can be regarded as a proof mass of swinging 
H1. Without the participation of H2, the measured response results allow 
the identification of H1 parameters. 

2.2. Theoretical analysis 

Both aforementioned designs can be modeled by the simplified mo
tion models shown in Fig. 2. Since the coil weight of H2 is non-negligible 
when compared with the weight of the spring-mass oscillator, the weight 
of H2 coil and the boned tube is regarded as a concentrated mass m1. m2 
is the equivalent weight of the spring-mass oscillator. The coordinate 
origin is selected at the rotating shaft in the swing plane. c1 and c2 are 
the equivalent damping coefficients of rotational H1, and the trans
lational H2, respectively. k is the spring stiffness of translational vibra
tion system, l1 is the distance between the origin and m1 center of 
gravity, which is a constant for both static and dynamic cases. l2 denotes 
the distance between the origin and m2 with unstretched spring. The 
distance between the origin and m2 is changing due to the spring 
deformation, denoted by r. The swing angle is denoted by θ, and the 
whole system is excited by a displacement s in the horizontal direction. 

The degenerative one DOF system can be modeled with a simple 
swing pendulum as shown in Fig. 2(b). The concentrated mass m is 
calculated by adding up m1 and m2. The distance l can be measured 
between the origin and the mass center of gravity. The remaining 
symbols are the same as the spring pendulum system. To obtain the 
system response under different inputs of both kinds of designs, the 
second kind of Lagrange’s equation is used: 

d
dt

(
∂T
∂q̇

)

−
∂T
∂q

+
∂U
∂q

+
∂D
∂q̇

= 0 (1)  

where T is the kinetic energy, U is the potential energy, D is the dissi
pative power, q is the independent coordinates necessary to describe the 
system’s motion at any instant. The detailed expression of each symbol 
in both systems will be deduced in the next subsections. 

2.2.1. Damped spring pendulum 
For the damped spring pendulum system in Fig. 2(a), the kinetic 

energy, potential energy, and dissipative power can be written as: 

T =
1
2
m1

[(

ẋ1 − ṡ
)2

+ ẏ2
1

]

+
1
2
m2

[(

ẋ2 − ṡ
)2

+ ẏ2
2

]

(2)  

U = m1gy1 +m2gy2 +
1
2

k
(

r +
m2g
k2

)2

(3)  

Fig. 1. Structure design with a rotational EMEH (H1) and translational EMEH (H2): (a) Dual EMEHs in spring pendulum structure; (b) one harvester (H1) with single 
pendulum response only. 
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D =
1
2
c1θ̇

2
+

1
2
c2 ṙ2 (4)  

where the positions of m1 and m2 in Cartesian coordinate can be 
described as follows: 

x1 = l1sinθ, ẋ1 = l1cosθ • θ̇.
y1 = − l1cosθ, ẏ1 = l1sinθ • θ̇ 
x2 = (l2 + r)sinθ, ẋ2 = (l2 + r)cosθ • θ̇+ ṙ • sinθ 
y2 = − (l2 + r)cosθ, ẏ2 = (l2 + r)sinθ • θ̇ − ṙ • cosθ 
For the coordinate θ, taking all the variables and realtions into Eq. (1) 

yields: 
[
m1l21 +m2(l2 + r)2

]
θ̈ − [m1l1 +m2(l2 + r) ]cosθs̈+ 2m2(l2 + r)ṙθ̇

+m1gl1sinθ+m2g(l2 + r)sinθ+ c1θ̇ = 0
(5) 

For the coordinate r, taking all the variables and realtions into Eq. (1) 
yields: 

m2 r̈ − m2 s̈sinθ − m2(l2 + r)θ̇2
+ kr+m2g − m2gcosθ+ c2 ṙ = 0 (6) 

The detailed relations derivation of variables are shown in Appendix 
A. The final explicit expressions of Eqs. (5) and (6) are: 

θ̈ =
1

m1l21 + m2(l2 + r)2

{
[m1l1 +m2(l2 + r) ]cosθs̈ − 2m2(l2 + r)ṙθ̇

− m1gl1sinθ − m2g(l2 + r)sinθ − c1θ̇
} (7)  

r̈ = s̈ sinθ+(l2 + r)θ̇2
−

k
m2

r+ g(cosθ − 1) −
c2

m2
ṙ (8)  

2.2.2. Damped single pendulum 
For the degenerated single pendulum system in Fig. 2(b), only one 

DOF exists with the moving mass m = m1 + m2. Corresponding kinetic 
energy, potential energy, and the dissipative power can be written as: 

T =
1
2

m
[
(ẋ − ṡ)2

+ ẏ2
]

(9)  

U = − mglcosθ (10)  

D =
1
2
c1θ̇

2 (11)  

where the positions of m in Cartesian coordinate can be written as: 
x = lsinθ, ẋ = lcosθ • θ̇ 
y = − lcosθ, ẏ = lsinθ • θ̇ 
With the detailed relations derivation in Appendix B, Eq. (1) can be 

transferred as: 

ml2θ̈ − mlcosθ • s̈+mglsinθ+ c1θ̇ = 0 (12) 

The explicated expressions of Eq. (12) can be written as: 

θ̈ =
1
l
cosθ • s̈ −

g
l
sinθ −

c1

ml2
θ̇ (13)  

3. Experimental setup and parameter identifications 

To verify the energy harvesting performance and theoretical ana
lyses, a prototype of dual EMEHs is fabricated and settled on an ultra- 
low frequency vibration exciter for the test. Corresponding model 
parameter identification process is also elaborated in this section. 

3.1. Experimental setup 

The experimental system is built as shown in Fig. 3 to implement the 
design model in Fig. 1. A linear motor with the capacity of providing 
ultra-low frequency motion is used as the exciter. Relative motor driver 
and control box are used to control the excitation types. 

A prototype with dual EMEHs in a spring pendulum structure is 
fabricated and fixed on a holder, which is connected with the mover of 
the linear motor. External resistors R1 and R2 are used to tune the 
matching resistance and count the output power of H1 and H2. As shown 
in Fig. 3(b), the stator of rotational H1 is fixed on the stator, while the 
rotor is connected with the pendulum rotating shaft. An angular 
displacement sensor is also boned with the pendulum rotating shaft to 
measure the pendulum swing angle. The coil of the translational H2 
bonded with the pendulum, and the magnets bar plays as part of moving 
mass m2 of the spring-mass oscillator system in Fig. 3(c). A laser 
displacement sensor is fixed on the coil that also contributes to m1. After 
tuning the relative position between the magnets bar and the coil to 
ensure proper coupling when the spring is stretched with gravity, two 
limit circular plates in Fig. 3(d) are used to restrict the vibration 
amplitude so that H2 operates in an effective range. The two displace
ment sensors, and the external resistors R1 and R2 are connected to a 
data acquisition station (DAS) so that the response and the output power 
can be measured. The related converter parameters of both H1 and H2 
are listed in Table 1. 

3.2. Model parameter identification 

The hand-measured structural parameters usually contain accumu
lated errors for the performance evaluation. The parameter identifica
tion based on the sensor-measured signals can highly improve the 
reliability of the proposed model. For the dual EMEHs, the natural fre
quency, matching resistance, and corresponding damping coefficients of 
H1 and H2 are dominant parameters to be identified. 

Fig. 2. Simplified motion model: (a) Spring pendulum; (b) single pendulum.  
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3.2.1. Natural frequency 
The natural frequency of the swinging pendulum and the spring mass 

oscillator can be easily obtained through the free vibration response 
curves with both harvester coils set in open circuit conditions. When the 
second DOF is blocked by adding cable ties to bond the magnet bar and 
the coil as shown in Fig. 3(c), the pendulum swinging free response 
curve can be obtained as shown in Fig. 4(a). Similarly, when the rota
tional shaft is fixed to restrict swinging, an initial displacement excita
tion will trigger the free vibration response of the second DOF. The 
corresponding curve is plotted in Fig. 4(b). Both free vibration response 
curves can be described as the equation below: 

θ(t) |r(t) = e− ζωnt
(

A1cos
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
√

ωnt+A2sin
̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ζ2
√

ωnt
)

(14) 

Both curves in Fig. 4 show the standard free vibration response 
characteristics so that the natural frequency can be identified with the 

Fig. 3. Experimental setup: (a) Overview; (b) rotational EMEH H1; (c) linear EMEH H2; (d) detailed spring of H2.  

Table 1 
Converter parameters of H1 and H2.  

Converter Parameter Value 

H1 

Length 53.8 mm 
Diameter 24.4 mm 
Gear ratio 78 

Stator resistance 37.5 Ω 
Speed constant 4.9 mV/rpm 

H2 

Length 120 mm 
Diameter 32 mm 

Coil resistance 1.5 Ω 
Transduction factor 6.522 V•s/m  

Fig. 4. Natural frequency identification of: (a) H1 in single pendulum system; (b) H2 in spring pendulum system with no swinging.  
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FFT of the obtained signals. The FFT results show that the pendulum 
swinging natural frequency is 0.8 Hz, and the spring mass oscillator 
system’s natural frequency is 1.6 Hz. The natural frequency ratio is 1:2 
that satisfies the internal resonance requirement as discussed in the 
literature. 

3.2.2. Matching resistance 
To achieve maximum output power, the connected external re

sistances of H1 and H2 require optimal matching. Theoretically, the 
optimal external resistance for maximum power [69] equals the internal 
resistance of EMEH coils. However, in real applications, the coil with a 
closed loop circuit will generate considerable heat. Therefore, the 
optimal matching resistance is larger than the internal resistance due to 
the influence of temperature and other related factors. 

Prior to the starting of the optimal matching resistance test, the coil 
internal resistances of H1 and H2 are measured by a precision resistance 
instrument. The internal resistance of H1 is 37.5 Ω, and that of H2 is 1.5 
Ω. Then, the output power of H1 with variable external resistance is 
measured with the linear motor under the excitation frequency f = 1 Hz 
and peak-to-peak amplitude A = 0.1 m. The variable output power 
curve of H1 with different external resistance is plotted in Fig. 5(a), 
which shows the maximum output power appears when external R1 ≈45 
Ω. Moreover, the output power of H2 with variable external resistance is 
measured with the linear motor under the excitation frequency f =
2.5 Hz and amplitude A = 0.1 m. The variable output power curve of H2 
with different external resistance is plotted in Fig. 5(b), which shows the 
maximum output power appears when external R2 ≈2.5 Ω. The 
matching resistance of both EMEHs is slightly larger than their internal 
resistance, which is consistent with the above analysis. 

3.2.3. Rotational damping coefficient 
With the assumption that the internal friction of the gearbox is 

negligeable, the rotational damping coefficient can be regarded to vary 
linearly with the circuit impedance. The rotational damping coefficient 
c1 is calculated using the above selected optimal matching resistance in 
the single pendulum configuration to avoid the influence of internal 
energy alternation. The second DOF is blocked with the same methods as 
the pendulum natural frequency test. The external resistance R1 is set at 
the matching resistance value of 45 Ω. The excitation frequency of the 
linear exciter is set at f = 1 Hz, and the excitation amplitude is varied 
discretely from A = 0.025 m to A = 0.2 m. Then, the swing response of 
the single pendulum is measured by the angular displacement sensor. 

With the measured structural parameters m = 1.4234 kg and l =

0.344 m and the varied excitation amplitude, the differential equation 
Eq. (13) can be solved through a numerical calculation software. The 
swing angle in time domain with excitation amplitude A = 0.1 m and 
the swing angle amplitude with different excitation amplitudes are 
measured and plotted in Fig. 6 to compare with the simulation results. 
After tuning the damping coefficient c1 in the calculation, the most 

suitable c1 fitting the measurement is searched out at 0.3684 N•m•s/ 
rad. As shown in Fig. 6(a), the time-domain response curve agrees well 
with the simulated curve in both amplitudes and phases. The measured 
swing angle amplitude curve with varied excitation amplitude A in Fig. 6 
(b) is also consistent with the simulation results. Some internal friction 
and gear clearance effects may result in the deviation of several indi
vidual situations, which is also visible on the curves. 

3.2.4. Translational damping coefficient 
For the energy harvester H2, the structure is a typical linear elec

tromagnetic shunt damper for which the damping coefficient should 
follow linear variation. Since the matching resistance is small and the 
equivalent damping is rather high, free vibration response cannot last 
for several periods for the damping coefficient identification. The 
translational damping coefficient c2 is calculated using the above 
selected optimal matching resistance when H2 is under force excitation. 
The linear exciter in this study can only function in horizontal direction 
so that H2 cannot be excited directly. Therefore, both swinging and 
translational DOFs are released in this test that the internal resonance 
occurs. The total mass m in the last rotational damping coefficient test is 
divided into m1 and m2. With the roughly measured effective length l1 
and l2, the masses and lengths satisfy the following relationship: 

m1l1 +m2l2 = (m1 +m2)l (15) 

In light of Eq. (15), the calculation runs with slightly ratified struc
tural parameters. The spring stiffness k can be obtained by measuring 
the deformation and the changed hanging mass. The damping coeffi
cient c2 can be roughly estimated by referring to the calibrated trans
duction factor (Kt ≈6.522 V•s/m) in Ref. [68]. 

With updated parameters, the damping coefficient c2 is identified as 
10.6 N•s/m, which is very close to the calculated value based on the 
transduction factor. With the identified parameters, the measured re
sults and calculated results in terms of rotational angle θ variation with 
different amplitudes are in agreement as shown in Fig. 7(a) and (b). Note 
the measured translational displacement r variation results slightly 
deviate from the calculated results in Fig. 7(c) and (d). The observed 
difference between the measurement and calculation can be caused by 
factors like the air gap as well as the friction effect. Indeed, a 2 mm air 
gap exists between the EMEH magnets bar and the coil central hole. The 
laser displacement sensor is assembled parallelly to the EMEH magnets 
bar as shown in Fig. 3(c). However, the expected perfect parallel 
arrangement may not be maintained due to the air gap when the spring- 
mass oscillator is subjected to the centrifugal force, resulting to impre
cise displacement measurement. Moreover, when the pendulum swings, 
the magnet might hit the internal surrounding area of the coil, thus 
generating contact or frictional forces which also bring error between 
the experiment and calculation. This might explain that fact that the 
measured experimental results are lower than calculated ones. Having 
said that, quantified analysis on the influences of the above factors is 

Fig. 5. Optimal external resistance matching for maximum output power of (a) H1 and (b) H2.  
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challenging, which deserves additional systematic work in the future. 
The identified parameters of the proposed harveseters are verified 

with tests, and the key parameters are listed in Table 2. 

4. Experimental results and discussion 

In this section, the excitation with constant acceleration and discrete 
sinusoidal frequency sweeping from 0.5 Hz to 5 Hz is conducted, and 
corresponding output power with both spring pendulum and single 
pendulum system is measured. Moreover, the excitation with constant 
sinusoidal frequency and varied amplitudes is also provided to reach the 
maximum output of the designed dual EMEHs. 

4.1. Output with constant acceleration 

Based on the relationship between the sinusoidal displacement and 
acceleration, the constant acceleration (0.2 g) excitation curve can be 
drawn and imported into the linear motor driver. The spring pendulum 
system and single pendulum system are both measured to assess the 

Fig. 6. Rotational damping coefficient c1 identification in single pendulum test: (a) Rotational angle θ in time domain with the excitation amplitude A = 0.1 m; (b) 
peak value of rotational angle θ with different excitation amplitude A. 

Fig. 7. Translational damping coefficient c2 identification of: (a) Rotational angle θ in time domain with the excitation amplitude A = 0.1 m; (b) peak value of 
rotational angle θ with different excitation amplitude A; (c) translational displacement r in time domain with the excitation amplitude A = 0.1 m, (d) peak value of 
translational displacement r with different excitation amplitude A. 

Table 2 
Identified parameters of both systems.  

System Notation Value 

Single pendulum m 1.4234 kg 
l 0.344 m 

Spring pendulum 

m1 0.6625 kg 
m2 0.7609 kg 
l1 0.31 m 
l2 0.3736 m 
k 80.9 N/m 
c1 0.3684 N•m•s/rad 
c2 10.6 N•s/m  
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performance. 

4.1.1. Spring pendulum system 
The output voltage of H1 and H2 with frequency-swept sinusoidal 

and constant acceleration excitation is shown in Fig. 8(a) and (b). The 
maximum output voltage appears around the pendulum swinging nat
ural frequency (0.8 Hz ~ 0.9 Hz), further precisely identified as 0.85 Hz, 
which can be embodied in Fig. 8(c). The output voltage variation follows 
an increasing trend before 0.85 Hz before decreasing. An abnormal 
phenomenon occurs at 1.6 Hz, where the output voltage of H1 is smaller 
than the ones in its adjacent frequency bands, while the output voltage 
of H2 is larger. This is due to the energy transfer from the pendulum 
swinging to the spring mass oscillator as a result of the internal reso
nance phenomenon. The internal resonance phenomenon can be better 
seen through the output voltage comparison at 1.6 Hz in Fig. 8(a) and 
(b). 

Under constant acceleration excitation, the output power curves of 
H1 and H2 are plotted in Fig. 8(c) and 8(d). The maximum output power 
of H1 with 0.85 Hz excitation is around 398 mW, and the synchronous 
output power of H2 is around 350 mW. The total output power is 0.75 W, 
which is sufficient for powering some sensors and low-power- 
demanding electrical appliances. The frequency band of H1 is wider 
than that of H2 due to their frequency response characteristics. How
ever, H2 can provide a double frequency output so that the frequency up- 
conversion can also be implemented. Moreover, the measured results 
match well with the calculated ones except for the lower peak value and 
narrower bandwidth. One plausible reason might again be the effect of 
the internal friction which causes lower response in the measured output 
power at peak and other frequencies as compared with the calculated 
results. 

4.1.2. Single pendulum system 
To compare the output performance with the above spring pendulum 

system, the output voltage and power of the degenerative one DOF 
swinging pendulum are also measured with identical excitation. As 
shown in Fig. 9(a), the maximum output power also locates at 0.85 Hz 
with a larger amplitude than that of spring pendulum system. It is worth 
noting that no internal resonance phenomenon exists with 1.6 Hz exci
tation. The maximum output power is around 0.45 W as shown in Fig. 9 
(b), which is larger than that of H1 output in the spring pendulum sys
tem, but much smaller than that of the total output of H1 and H2 output 
in spring pendulum system. Therefore, the spring pendulum is capable 
of enhancing the energy harvesting performance of the single pendulum 
harvester. Similar to the calculated results of the spring pendulum sys
tem, the calculated results of the single pendulum possess a larger peak 
value when the internal friction is not considered. 

4.2. Maximum output 

To evaluate the maximum output power of the proposed dual 
EMEHs, both the spring pendulum system and single pendulum system 
are measured with the resonance frequency (0.85 Hz) and increasing 
excitation amplitudes. 

4.2.1. Spring pendulum system 
With the increasing excitation amplitudes, the output power of the 

spring pendulum system is extracted through the measured voltage as 
shown in Fig. 10. With the excitation amplitude of A = 150 mm (ac
celeration is equal to 0.29 g), the output power is around 450 mW for 
both H1 and H2. The total output power is around 900 mW, which 
reaches the level of Watt. Since the transduction factor is increasing with 
its dimension [3], large replaceable EMEHs would yield even higher 
harvesting performance. The output power of H1 is monotonically 

Fig. 8. Dual-EMEHs output in the spring pendulum system: (a) Output voltage of H1; (b) output voltage of H2; (c) output power of H1 with varied excitation 
frequencies, (d) output power of H2 with varied excitation frequencies. 
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increasing with the excitation amplitude A. However, the output power 
of H2 possesses a peak point at A ≈150 mm. The decreasing reason after 
the peak point is that the vibration amplitude exceeds its effective 
working range. Reaching A ≈175 mm, the vibration amplitude is too 
large so that impact occurs between the eyebolt and the limiting plates 
in Fig. 3(d). When A >150 mm, the output voltage of H2 is not a regular 
sinusoidal wave that can hardly be utilized by electrical appliances 
directly. Compared with a single pendulum system, the spring pendulum 
system with the added translational DOF contains lower stiffness, which 
contributes to the large working stroke of the added DOF. Therefore, the 
maximum excitation amplitude is limited to avoid impact damage to 
internal structures. 

Moreover, this impact phenomenon can also trigger the overloading 
situation with large ocean wave excitation. To avoid possible destruc
tion of the proposed harvester in this kind of harsh situation, the 
damping coefficient can be increased by decreasing tunable resistance 
R1 and R2. The tuning strategy will decrease the output power but 
safeguard the equipment. After the harsh excitation is over, the external 
resistance can be tuned back to the optimal matching resistance. 

4.2.2. Single pendulum system 
Similar to the constant acceleration excitation test, a comparative 

experiment of the single pendulum is conducted to reach its maximum 
output power with the increasing excitation amplitude. As shown in 
Fig. 11, the output power with A = 150 mm is 450 mW, which is near 
the H1 output in the spring pendulum system but only half of the total 

output power. If the excitation amplitude increases to A = 250 mm, the 
output power will be increased to around 720 mW, which is larger than 
the H1 output in the spring pendulum system but still less than the total 
output power with even smaller excitation. Moreover, when the single 
pendulum is excited with larger amplitudes, the increase in the output 
power slows down. The reason is that the pendulum period increases 
with the swing angle due to the nonlinear variation relationship be
tween them. Therefore, when the swing angle is sufficiently large 
(90◦ ,180◦ ), the pendulum response is not suitable for energy harvesting. 
The pendulum-like system strives to cross the unstable equilibrium point 
at 180◦ , then the swing motion is converted into a circular motion. This 
might inspire a different design in future research. 

To the best of the authors’ knowledge, the output power with the 
proposed dual EMEHs is larger than the ones from similar pendulum-like 
harvesters of the same magnitude reported in the literature. For better 
comparison, the power density that informs on the output power per 
unit volume is calculated. The total volume of the two converters is 
117.07 cm3, namely 20.61 cm3 for H1 and 96.46 cm3 for H2, based on 
the dimensions tabulated in Table 1. To achieve a fair comparison, in the 
single pendulum system, H2 acts as a proof mass whose volume is also 
included in the estimation of the total volume. The calculated output 
power densities are 7.68 mW/cm3 and 6.15 mW/cm3 for the spring 
pendulum system and the single pendulum system, respectively. 
Therefore, compared with the single pendulum, the spring pendulum 
offers higher energy output, a wider frequency output bandwidth, and 
effective energy output with the vertical motion excitation arising from 
the ocean wave heave motion. 

Fig. 9. H1 in single pendulum system: (a) Output voltage; (b) output power with varied excitation frequency.  

Fig. 10. Output power of dual-EMEHs with different excitation amplitudes in 
spring pendulum system under 0.85 Hz excitation. 

Fig. 11. Output power of H1with different excitation amplitudes in the single 
pendulum system under 0.85 Hz excitation. 
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5. Conclusions 

Dual EMEHs design in spring pendulum structure is proposed in this 
paper for ultra-low frequency vibration energy harvesting. A rotational 
EMEH is in charge of harvesting the swinging energy and a translational 
EMEH of the linear vibration energy. To identify the system variables 
and compare the performance, the degenerative single pendulum system 
with one DOF is used by locking the relative motion of the translational 
EMEH. Theoretical and numerical analyses are performed on both sys
tems through system modeling based on Lagrange’s equation. 

Experiments on both systems are conducted to verify and compare 
their respective energy harvesting performances. The structural pa
rameters are identified step by step with several pre-tests. Then, the 
excitations with constant acceleration (swept sinusoidal waves) and 
constant frequency (increasing amplitudes) are implemented on both 
systems to elucidate the harvested energy. Experimental results with 
constant acceleration excitation confirm the effectiveness of the spring 
pendulum structural design. Dual EMEHs in the spring pendulum system 
can harvest higher energy (0.75 W) than that in the single pendulum 
system (0.45 W) with a 0.2 g excitation. Moreover, the spring mass 
oscillator, vibrating due to internal resonance, can trigger the frequency 
up-conversion feature while suppressing the swing angle of the main 
system. The measured maximum output power is doubled when the 
single pendulum system is changed as the spring pendulum system 
under the excitation (0.85 Hz, 0.29 g). The tunable damping of the dual 
EMEHs can protect the equipment from destruction under harsh 
situations. 
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Appendix A. Motion equation of the damped spring pendulum 

For the damped spring pendulum Lagrange equation derivation, with the coordinate decomposition and variables substitution, the total kinetic 
energy of m1 and m2 becomes: 

T =
1
2
m1

(
l21θ̇

2
+ ṡ2

− 2l1cosθ • θ̇ • ṡ
)
+

1
2
m2

{
(l2 + r)2θ̇

2
+ ṙ2

+ ṡ2
− 2ṡ

[
(l2 + r)cosθ • θ̇+ ṙ • sinθ

]}
(A1) 

The gravitational and elastic potential energy can be written as: 

U = − m1gl1cosθ − m2g(l2 + r)cosθ+
1
2

k
(

r +
m2g
k2

)2

(A2) 

For the coordinate θ, corresponding components in Eq. (1) can be deduced, as follows: 

∂T
∂θ̇

= m1l21θ̇ − m1l1 ṡcosθ+m2(l2 + r)2θ̇ − m2(l2 + r)ṡcosθ (A3)  

d
dt

(
∂T
∂θ̇

)

=
[
m1l21 +m2(l2 + r)2

]
θ̈ − [m1l1 +m2(l2 + r) ]cosθs̈+ [m1l1 +m2(l2 + r) ]ṡθ̇sinθ+2m2(l2 + r)ṙθ̇ − m2 ṙṡcosθ (A4)  

∂T
∂θ

= [m1l1 +m2(l2 + r) ]ṡθ̇sinθ − m2 ṙṡcosθ (A5)  

∂U
∂θ

= m1gl1sinθ+m2g(l2 + r)sinθ (A6)  

∂D
∂θ̇

= c1θ̇ (A7) 

For the coordinate r, corresponding components in Eq. (1) can be deduced, as follows: 

∂T
∂ṙ

= m2 ṙ − m2 ṡsinθ (A8)  

d
dt

(
∂T
∂ṙ

)

= m2 r̈ − m2 s̈sinθ − m2 ṡθ̇cosθ (A9) 
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∂T
∂r

= m2(l2 + r)θ̇2
− m2 ṡθ̇cosθ (A10)  

∂U
∂r

= kr+m2g − m2gcosθ (A11)  

∂D
∂ṙ

= c2 ṙ (A12) 

Then, taking Eqs. (A3) ~ (A12) into Eq. (1), the Lagrange equation of m1 and m2 can be obtained as Eqs. (5) and (6). 

Appendix B. Motion equation of the single spring pendulum 

For the damped spring pendulum Lagrange equation derivation, the kinetic energy of total mass m can be expressed as: 

T =
1
2

m
(

l2θ̇
2
+ ṡ2

− 2lcosθ • θ̇ • ṡ
)

(B1) 

Concerning the only variable θ, corresponding components in Eq. (1) can be deduced as: 

∂T
∂θ̇

= ml2θ̇ − mlcosθ • ṡ (B2)  

d
dt

(
∂T
∂θ̇

)

= ml2θ̈+mlsinθ • θ̇ • ṡ − mlcosθ • s̈ (B3)  

∂T
∂θ

= mlsinθ • θ̇ • ṡ (B4)  

∂U
∂θ

= mglsinθ (B5)  

∂D
∂θ̇

= c1θ̇ (B6) 

Then, taking Eqs.(B1) ~ (B6) into Eq. (1), the Lagrange equation of m can be obtained as Eq. (12). 
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