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A B S T R A C T

The advances of Visual object tracking tasks in computer vision have enabled a growing value in its application
to video surveillance, particularly in a traffic scenario. In recent years, significant attention has been made for
the improvement of multiple object tracking frameworks to be effective in real-time while maintaining accuracy
and generality. By breaking down the tasks involved in a Multiple Object Tracking framework based on the
Tracking-By-Detection approach — an extension of simply detecting and identifying objects, further involved
solving a filtering problem by defining a similarity function to associate objects. Hence, this paper focuses on
the task of data association via uniquely defined similarity functions and filters only where we review current
literature about these techniques which have been used to advance the performance in MOT for vehicle and
pedestrian scenarios. While there is difficulty in classifying the quantitative results for the association task
only within a proposed MOT framework, our study tries to outline the fundamental ideas put forward by
researchers and compare results in a theoretically qualitative approach. Tracking methods are reviewed by
categories based on legacy techniques like Probabilistic and Hierarchical methods, followed by an analysis
of new approaches and hybrid models. The models identified in each category are further analysed based on
performance in stability, accuracy, robustness, speed and computational complexity to derive an understanding
of which direction the research within the data association level is strong and which is lacking. Our review
further aims to identify the successful models applied to recognize the weaknesses for future improvement.
1. Introduction

Multiple object tracking (MOT) has become an important area
in video sequences for traffic surveillance (Kokul et al., 2015; Lee
et al., 2017a; Zeng et al., 2016), security monitoring (Gong, 2005),
behaviour analysis (Dehghan et al., 2015; Dimitrievski et al., 2019),
action recognition (Cherian et al., 2018; Choutas et al., 2018; Luvizon
et al., 2018), etc. Including the task of associating individual objects,
initiating, maintaining and correctly terminating the track of an object
has become paramount for the overall improvement in the performance
of an MOT framework (Bergmann et al., 2019; Milan et al., 2013; Noh
et al., 2015; Sun et al., 2019). Taking previously known information
about an objects shape (Lee & Hwang, 2015; Steyer et al., 2018),
movement (Anuj & Krishna, 2017; Lee & Hwang, 2015; Lin & Hung,
2018), poses (Dorai et al., 2017; Tang et al., 2018a; Tang & Hwang,
2019) and changes in appearance (Rasmussen & Hager, 2001; Taalimi
& Qi, 2015; Tran & Harada, 2013), the process of data association
involves comparing this previously learned information about newly
identified objects within an input video frame. While data association
can cover information about identification, location and trajectory, this
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study focuses on associating objects trajectory-based tasks. Issues often
associated with data association include missing detections, occlusion
and target interaction within crowded scenes.

Using the information that was previously observed based on the
track, pose or identity to match with new information about objects,
algorithms have been developed for optimization and mathematically
add value for computer vision researchers. The current weaknesses are
found in trying to improve the accuracy and efficiency of introducing
and recovering tracks without increasing the rate of false alarms.

Optimizing a data association algorithm, filter or function involves
identifying key challenges in the physical condition of the input frames
such as different levels of noise (Tang et al., 2018b; Wang et al., 2018b;
Yang et al., 2018b), clarity (Zhu et al., 2017) and low to medium
image resolutions (Gao et al., 2015; Jiang et al., 2015; Tang et al.,
2018b). Handling the spatial and temporal state conditions (Seong &
Park, 2012) is another challenge which includes the popularly men-
tioned partial and full occlusion states, frequent occlusion occurrences,
illumination, object re-identification over short and longer periods of
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Fig. 1. A classification summary of the data association tasks used in previous work, including mentions in the Related Works sections of published papers. Most classifications
are divided into two areas, for example, Local and Global, Single View and Multi-View, Hard and Soft Associations, to name a few. Since classifications have been well described
in Object Tracking literature, our paper focuses on the new techniques applied in popular classifications.
time, scale changes, motion blur due to fast movement and adap-
tation to rotational appearance changes. While these challenges are
often described for improvement in multiple object tracking tasks, it
is specifically the layer of data association that needs to handle these
encounters for optimization. In reference to considering the spatial and
temporal states, Seong et al. divided the association task into four
aspects — distinguishability, visual feature, spatiotemporal prediction
and change prediction to illustrate a proposed likelihood model and the
intermediate relationships.

Though a future concept may involve the merging of tasks for
detection and association within an MOT framework, at present, it is
observed that the task of data association is still predominantly sepa-
rated into a specified model or layer. The scope of this paper applies to
the survey of work published within the last three years and filtered by
area of interest. The areas include computer vision, computer science
and visual multi-object tracking for vehicles and pedestrians in a traffic
surveillance video, publication year and keywords. Considerations were
also made in terms on the number of citations made per paper and the
journal or source of publication. The individual related works catego-
rize association methods in many forms which have been summarized
in Fig. 1, however, this review focuses on the type of technique rather
than the category because of the increasing effort to merge advantages
of multiple categories in order to offer a more generalized model
application. For example, sequential (Al-Shakarji et al., 2018; Hou,
Yang et al., 2017; Ritter et al., 2018) and batch (Taalimi & Qi, 2015;
Yang et al., 2018a), local and global (Bozorgtabar & Goecke, 2017;
Steyer et al., 2018; Xiao & Zhong, 2017), hard (Godinez & Rohr, 2014;
Niedfeldt et al., 2017) and soft (Chen et al., 2017a; Date et al., 2014)
approaches.

Due to the multiplied number of possible technique types, models
are categorized and discussed based on its legacy techniques — Prob-
abilistic (Chalvatzaki et al., 2018a; Huang et al., 2017; Rasmussen &
Hager, 2001), Hierarchical (Chen et al., 2018; Li et al., 2018; Liu et al.,
2017), IMM (Blackman et al., 1995; Yuan et al., 2017b), Kalman Filter
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Based (Jeong et al., 2014; Milan et al., 2013; Sahbani & Adiprawita,
2016), Fuzzy Association (Li et al., 2017a; Tafti & Sadati, 2010; Xi-
yang et al., 2018) and New Techniques in particular. Since a numerical
qualitative results comparison cannot be performed without consider-
ing the elements within discussed frameworks, we instead highlight
key feature performance characteristics which are met by each model.
These characteristics include stability, accuracy, speed, robustness and
computational complexity.

The remainder of this paper is arranged in the following order:
Section 2 describes the previously surveyed work and defines the cat-
egories of data association in the existing literature. Section 3 presents
the recent techniques of data association applied in current Multiple
Object Tracking frameworks for pedestrian and vehicle environments.
Section 4 offers a qualitative summary table and a discussion of the
updated techniques. Section 5 contains the conclusions.

2. Previously surveyed work

Since the function of data association is embedded as an element
within the Multiple Object Tracking frameworks, there are more com-
parative reviews on full tracking frameworks (Fan et al., 2016; Fiaz
et al., 2018; Li et al., 2018; Luo et al., 2014; Mandal & Adu-Gyamfi,
2020; Ooi et al., 2020; Wang et al., 2018b) rather than the individual
elements. Recent reviews include a survey on tracking algorithms by
Fan et al. (2016), a review of tracking methods for noisy targets by Fiaz
et al. (2018) and an MOT literature review by Luo et al. (2014) who
covers the processes, components, models and evaluations for frame-
works designed to track multiple objects. Fiaz et al. (2018) lists and
describes specifically published filters and trackers that try to overcome
different levels of noisy data while Fan et al. (2016) offers a simple
understanding of the Visual MOT process and existing categorizations.
Recent reviews based on data association include a different approach
on classification with three traditional data association methods (prob-
ability, conversation and layering) and then focuses on deep learning
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based methods by Li et al. (2020). Yarkony et al. (2020) surveys data
association methods where an instance is based on parameters by a set
of observations and a set of possible hypotheses.

Some specific analysis on data association techniques have been
documented, particularly by Buluttekin et al. (2017) in the area of
multiple vehicle tracking but limits its study to the identification of the
GNN and PDAF algorithms for comparison. Our study, in particular,
tries to cover as many classifications of association algorithms pub-
lished in recent years as well as considering methods that apply to both
pedestrians and vehicles alike. Rasmussen and Hager (2001) surveyed
methods only under the Probabilistic Data Association umbrella and its
evolution to Joint approaches such as the JPDAF (Joint PDAF) and JLF
(Joint Likelihood Filter). Hou, Wan et al. (2017) published a review
of pedestrian tracking by comparing methods between single and over-
lapping cameras. Another notable survey performed under the subject
of object tracking includes a review of RGB-D video datasets by Zhang
et al. (2016). Emami et al. (2020) compares measurement-to-track and
track-to-track type of associations specifically.

Unique categories of data association that have been defined by past
works are listed below:

1. Single View and Multi-View: Single view refers to associations
related to data obtained from a single camera or sensor angle
in a specific time-frame while multi-view refers to a single scene
and a single timestamp with multiple camera angle view options
and multiple sensors. The multi-view approach does offer an
advantage when training an appearance model for objects at risk
of running with low computational efficiency.

2. Sequential (online) and Batch (offline): these are classification
methods under the tracking-by-detection approach where batch
tracking methods build multiple tracks by analysing and op-
timizing the entire video or an entire sliding window in an
offline mode. methods have been better applied to real-time
applications because tracks are built on a frame-by-frame basis,
and data association can be performed between successive two
frames at a time.

3. Global, Local and Graph-based: Global data association is similar
to the batch method in the sense that processing is performed
over a batch of frames rather than individual sequential frames
also making it difficult to apply to online streaming and process-
ing. Local association applies to a smaller environment with less
room for generalization as compared to global methods. In the
case of graph-based methods, the track graph-based approach
was introduced into multiple object tracking due to its effec-
tiveness in long term tracking of objects and features. Chong
(2012) wrote a review of graph approaches in data association
specifically.

4. Hard and Soft: Hard and soft data association relates to the
source of data being either hard or soft. Hard data is connected
to quantitative features, while soft refers to qualitative. These
terms also refer to the type of decisions made; for example,
PDAF uses soft decisions by averaging out all the association
possibilities. NNSF (Nearest Neighbour Standard Filter) is an
example that takes hard decisions in a greedy approach.

5. M2M, M2T and T2T: Michaelis et al. (2017) explains that M2 m
(Measurement to Measurement Association) uses all available
information from individual measurements for an association
by relating measurements from one sensor to measurements
originating from another sensor. M2T (Measurement to Track
Association) the data from one sensor at a single timestamp is
associated with the tracked object, whereas for T2T (Track to
Track Association) each sensor tracks the object individually.

6. Bayesian and Non-Bayesian: we would expect the analysis or al-
gorithm that simply applies the Bayesian Theorem to be termed
a Bayesian approach, but it is not completely similar to Bayesian
3

statistics. In Artificial Intelligence, Bayesian-based networks is
also another name for graphical-based models or Belief Networks
(BN) where Bayes’ rule is used for probabilistic inference. It is
therefore applied in applications of Probabilistic Data Associa-
tion (PDA). Non-Bayesian approaches are based on hypothesis
testing and connected with the frequency of features or events to
confirm a particular model. Based on the field of data association
and MOT, Non-Bayesian methods are likelihood-based where
interpretation tends to be more subjective.

7. NNFS, SNN and GNN: Nearest Neighbour and Finite Sets are
common terms used under Probabilistic Data Association for
target tracking due to their strength with sparse representations
and a combination with Finite Sets such as PHD (Probability Hy-
pothesis Density) filters try to estimate the target state without
association. While most association methods use a measure of
probability to evaluate different hypotheses, the Global Nearest
Neighbour attempts to find the single most likely hypothesis
within each scan of a frame-by-frame or batch-by-batch analy-
sis. The SNN (Suboptimal Nearest Neighbour) assignment algo-
rithm uses a probabilistic method which assigns observations to
existing tracks and minimizing some distance criteria.

8. PDAF and JPDA: PDAF (Probabilistic Data Association Filter)
uses a weighted average of all the measurements within a par-
ticular tracks validation region and is more common with single
target tracking. The JPDA or Joint approach is an extension of
the PDAF which applies to multi-target tracking.

9. Across-View and Across-Time: Across-view data association
matches objects which appear in different views of multiple
cameras while across-time data association matches currently
observed objects with previously observed object tracks.

10. Deterministic and Probabilistic: Deterministic data association
defines the optimal track set by global optimization algorithms
and work with prior knowledge of object characteristics, making
it quite useful in vehicle detection. Probabilistic methods apply
the Minimum Mean Square Error (MMSE) Estimate to confirm
or terminate tracks.

11. Generative and Discriminative: These refer to different
approaches of matching, and they tend to refer to classifications
under Bayesian statistics. Generative methods have gained pop-
ularity with their ability to exploit unlabelled data in addition
to labelled data. However, this case is removed if a model
needs to be trained discriminatively to improve generalization.
Discriminative approaches offer better generalization but require
completely labelled data.

3. Techniques

The following section groups more specific approaches for tech-
niques that have become popular solutions within tracking frameworks
in recent years. A break down of techniques used are complemented
with supporting works that have applied these solutions (see Fig. 2).

3.1. Taxonomy

The classification of techniques has been categorized based on the
association structure and mechanism, algorithms used and its underly-
ing theoretical structure. Previously, the condensation of taxonomies
for data association methods has been applied based on filter types
such as Kalman and Bayesian, or association of probabilities alone
(PDA, JPDA). However, when considering the algorithms that do not
apply to probabilistic methods such as LSTM, it generalizes to different
conforms such as hierarchical methods. Hierarchical and probabilistic
methods, in particular, have not been compared side by side in previous
works. In contrast with these two legacy methods, new and further
updated/modified techniques are separately identified and discussed
to illustrate an efficiency comparison in the field of Multiple Object
Tracking and to also verify if the popularity of an algorithm is directly
proportional to its effectiveness, particularly in the area of intelligent

transportation.
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Fig. 2. The categories described in this paper have been simplified for the cleaner organization of papers and have been grouped among the different classifications illustrated.
Apart from Probabilistic and Hierarchical methods, other categories have been further subdivided while new techniques are grouped together.
Table 1
Results for 2-D Real Image Sequences In Terms of Tracking Accuracy
demonstrating greater accuracy by Kalman Filter but more consistency
among the sequences for the Particle Filter (Godinez & Rohr, 2014).
Sequence Particle filter Kalman filter

1 73 96
2 55 81
3 63 90
4 67 82
5 94 94
6 64 68
7 82 86
8 74 77
9 70 81

Mean 71 84

Std. Dev. 11 9

3.2. Probabilistic

The Probabilistic aspect refers to the Bayesian information (Xiang
et al., 2019; Yoon et al., 2015) while the filtering tracking algorithm
assumes the state and measurement equations to be linear. A Bayesian
strategy applied with Unmanned Aerial Vehicles (UAV) (Barkley &
Paley, 2017) implemented but requires more optimization with im-
proved motion models. In this respect, methods can be distributed
between the Kalman Filter (Jeong et al., 2014; Li et al., 2018; Sahbani &
Adiprawita, 2016) and Particle Filter (Chalvatzaki et al., 2018b; Kokul
et al., 2015; Yingyi et al., 2017). The Kalman Filter considers single
measurements per object based on a bottom-up localization algorithm,
applied recently in Luo et al. (2019) while the particle filter can
query multiple image positions to determine the location of an object
at the expense of high computational cost. Godinez and Rohr (2014)
published a tracking accuracy results table comparing the particle and
Kalman filter algorithm on microscopy images. Table 1 (Godinez &
Rohr, 2014) displays multiple accuracy results for 2-D Real-Time Image
Sequences in terms of tracking accuracy, but we have displayed only a
comparison between the Particle Filter and Kalman Filter. The results
show a higher mean and standard deviation for the Kalman Filter,
however, suggestions do state how particle filter is more useful in
situations of tracking multiple objects.

Zhong et al. (2016) uses the particle filter data association de-
veloped into a multi-mode method to approximate target posterior
distributions for non-linear systems to improve detection and tracking
accuracy. A modification of particle filters is the Probability Hypoth-
esis Density (PHD) filter where further development was made by
Leonard and Zoubir (2019) into a Diffusion Particle and Multi-Sensor
versions where the first was tested to track new targets faster correctly.
Chalvatzaki et al. (2018b) merged particle filters with PDA and an
Interactive multiple models for real-time selection of accurate motion
models and providing more robust estimates.
4

Variational Bayesian (VB) (Lan et al., 2016; Tang & Hwang, 2019;
Zhu et al., 2017) was formulated based on analytical approximations to
posterior distributions and by modelling the tracks with a state space
approach it offers the advantage of linear computational complexity
and confirms better results over the existing commonly used MHT al-
gorithm (Xiang et al., 2019). Further development by Lan et al. (2016)
for solving joint multi-mode detections is called the Joint Detection
and Tracking (JDT-VB) method. If moving to a non-linear state, the
extended version of the Kalman Filter explained in (Ribeiro, 2004) is
applied as the base algorithm (EKF) (Jiang & Cao, 2016; Mei et al.,
2017; Yuan et al., 2017a). The Probabilistic Data Association Filter
(PDAF) (Rasmussen & Hager, 2001; Ritter et al., 2018) was derived
from the Kalman filter to overcome weaknesses when tracking single
objects by introducing a notion of combined innovation. However,
when considering the tracking of multiple objects, it is not as conve-
nient to run a single PDAF tracker for each object (Rasmussen & Hager,
2001). Branching from the use of Bayesian information include the
Permutation Matrix Track Association (PMTA) (Lee, Kanzawa et al.,
2018), Global Nearest Neighbour (GNN) (Haag et al., 2018; Steyer
et al., 2018), Particle Filters (Kara & Özkan, 2018; Piao et al., 2016),
Multiple Hypothesis Tracking (MHT) (Chen et al., 2017b; Hou, Yang
et al., 2017; Sheng et al., 2018; Yoon et al., 2018), Deep Person
Re-Identification (Babaee et al., 2018; Guo & Cheung, 2018; Meng
et al., 2019; Shen et al., 2018) and the still popular Probability Data
Association Filter (PDAF).

According to Bar-Shalom et al. (2009) there are eight assumptions to
summarize the PDAF algorithm — only one target of interest is present,
the track has been initialized, the past time information about the target
is summarized in the form of the Gaussian posterior (Kaiser et al., 2018;
Lázaro-Gredilla et al., 2012), a measurement validation region is set
up around the predicted measurement at each time, if the target is
detected, and the measurement falls in the validation region than at
most one of the validated measurements can be target originated, the
remaining measurements are assumed to be false alarms, and the target
detections occur independently over time with a known probability.

Extensions under the branch of PDAF include the PDAE elliptical
approach (Godinez & Rohr, 2014) which interprets the association
probabilities of each measurement as weights relative to the image
likelihood of the object and Joint Integrated Probabilistic Data As-
sociation Filter (JIPDAF) (Hunde & Ayalew, 2018). A documented
enhancement of the PDAF is the Joint-PDAF which allows for more
advantages in multiple target tracking by introducing an exclusion
principle that avoids the scenario of two or more trackers connecting
to the same target. Further extensions to JPDAF have been proposed,
including Smooth Variable Structure Filter (SVSF-JPDA) (Luo et al.,
2019), Markov Chain JIPDA (MCJIPDA) (Lee et al., 2017b), Multi-
Frame JPDA (MFJPDA) (Hamid Rezatofighi et al., 2015), JPDA based
on extended target tracking (ETT) (Vivone et al., 2015) and Multi
Hypothesis JPDA (MHJPDA) (Stauch et al., 2017). Rasmussen and
Hager (2001) highlighted the disadvantages of JPDAF, such as the
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Fig. 3. In a study of Probabilistic Data Association Methods documented by Rasmussen and Hager (2001), there was an illustration of tracking results across homogeneous
regions for PDAF and JPDAF methods. Clearly, the PDAF model fails to maintain the track once the object has been occluded for a short period of time, indicating an issue with
re-identification.
requirement for every tracker to have the same image likelihood and
also the measurement process generates problems when objects over-
lap. The paper also illustrates the results difference between PDAF and
JPDAF when tracking across homogeneous regions (Fig. 3) (Rasmussen
& Hager, 2001). A sample-based approach was proposed by Zhang and
Tang (2018) to improve state estimation and for accuracy improvement
in the presence of inter-object occlusion. The Joint Likelihood Filter
(JLF) was developed to encode the measurement association and the
likelihood of the measurement for all targets. He et al. (2021) applies
the JPDA with a graph matching method to meet the demands of long
term tracklet association while maintaining accuracy in crowded scenes
though it still adds on to computational complexity. This computational
cost was addressed by Qu et al. (2020) by applying JPDA as a
reinforcement learning based association approach.

Cabrera (2018) applied the Global Nearest Neighbour association
technique to schedule variable field-of-view sensors for tracking mul-
tiple objects while multiple pedestrian tracking has been exploring
Deep Person Re-Identification (Meng et al., 2019; Wang et al., 2018b)
while Zhang et al. (2016) introduced a deep self-paced learning al-
gorithm. Re-ID features have also been incorporated into likelihood
association models for multiple pedestrian tracking to improve the
tracking performance qualitatively.

Altendorfer and Wirkert (2016) analysed the Measurement-to-track
association method by comparing and outlining the limitations of the
Mahalanobis algorithm, such as the number of uncertainties. These
are rectified by deriving an association log-likelihood distance which
is used in assignment algorithms, and this works better in steady-
state scenarios. To consider the effects of camera motion such as
translation, pitch or raw motion of the camera, Yoon et al. (2019)
proposed a framework of data association in two steps which inferred
a structural constraint event aggregation method followed by recovery
of missing objects between frames. Structural constraints are utilized
by introducing a new cost function.

If the number of tracking targets varies, such as with human targets,
the Probability Hypothesis Density filter (PHD) has the advantage of
estimating the cardinality of targets and their states. To recognize
the interaction and typical behaviour of human targets, a social force
model (SFM) (Feng et al., 2016) was incorporated within the MCMC
chain and paired with the PHD filter which improved localization and
cardinality.

Based on general analysis, there has been more focus on accuracy
in recent years (Cabrera, 2018; Chalvatzaki et al., 2018b; Granström,
Svensson et al., 2017; Hunde & Ayalew, 2018; Lan et al., 2016; Lee
et al., 2017b; Leonard & Zoubir, 2019; Luo et al., 2019; Mahemuti et al.,
2016; Rasmussen & Hager, 2001; Ritter et al., 2018; Stauch et al., 2017;
5

Yoon et al., 2019; Zhang & Tang, 2018) over the real-time requirement
of speed and computational complexity. Since 2020, some research has
demonstrated improved computational cost alongside good accuracy
performance such as Doherty et al. (2020), He et al. (2020b), Qu et al.
(2020) and Rangesh et al. (2021) While improvements in robustness
have been made under the Probabilistic approach, there is still more
attention required to generalizing association models and reducing the
reliability on better defined motion models. Weaker areas of interest
that are rarely highlighted include cardinality and overall stability.
Fig. 4 illustrates the breakdown of taxonomy (see Table 2).

3.3. Hierarchical

Hierarchical association methods take advantage of layering to
allow multiple techniques for different tasks. Recent approaches have
been spread between the use of the Hungarian algorithm (Allodi
et al., 2016; Chen et al., 2021; Daniłowicz, 2020; Duan & Li, 2021; Li
et al., 2017b; Lipovits et al., 2021; Meneses et al., 2020; Piao et al.,
2016; Riahi & Bilodeau, 2015; Wang et al., 2021; Wu et al., 2019;
Wu & Li, 2016; Yu et al., 2020; Zhang et al., 2020), LSTM based data
association (Chang et al., 2020; Farhodov et al., 2020; Kim et al., 2021;
Pang et al., 2021; Tan et al., 2018; Wan et al., 2018; Weng et al., 2020;
Xu & Zhou, 2018), tracklet association (Bae & Yoon, 2017; He et al.,
2020a; Wang et al., 2016; Yang et al., 2018a) and greedy data associ-
ation methods (Kim et al., 2021; Singh et al., 2017, 2017, 2017). The
incorporation of the Hungarian algorithm within current approaches
is still the most common method. A two-step approach deduced into a
compact data association method was proposed by Piao et al. (2016) to
improve the simplicity and robustness by splitting the association tasks
between a low and high-level stage. The results show more accuracy
with less noisy scenes which may require a more rich appearance
model. To handle the merging of obstacles, the Hungarian algorithm
was applied by Allodi et al. (2016) which improved processing time
and robustness but required improvement in maintaining tracks. A
discriminative model applied to multi-person tracking was defined by
Li et al. (2017b) to track through occlusion and accommodate long
periods of time. On the other hand, Riahi and Bilodeau (2015) applied
a generative appearance model to improve the robustness and accuracy
but with a high number of identity switches. Applied with a zero-mean
Gaussian function, Wu and Li (2016) defines a speed promoting method
with a focus on occlusion handling. Wu et al. (2019) introduced a
joint association matrix construction with the implementation of the
Hungarian algorithm to predict observations and allow more successful
tracks.
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Fig. 4. A classification of Probabilistic Data Association methods applied within recent years. Firstly, we divide the techniques based on the parent model design by Kalman Filter
or Particle Filter. The classifications are further detailed based on extensions of these models. On the left branch, Kalman Filter extends to PDAF versions of PDA as well as GNN
and Deep Person Re-Identification. On the right side, the particle filter extends to PHD, Bayesian methods, Social Force and Multi-Mode models.
Singh et al. (2017) proposed a threshold-based greedy algorithm
to find a locally optimal solution without the expense of computation
complexity. The idea combines components of tracklet association to
associate confirmed reliable tracklets in sets of pairs; however, while
the objective was to ensure a high-speed performance of the algorithm,
there was a compensation with qualitative results. A combination of
part-based matching and linear programming with a greedy algorithm
was described by Zhang et al. (2018) to offer a high track initi-
ation rate. Considering the complex changes of human appearance
through occlusion, illumination and pose changes, the method applies
graph matching with a combination of affinity constraints. Performance
results still display less satisfactory when handling occlusion in low-
resolution videos. Another combination of the greedy algorithm using
tracklet linking and particle filters was proposed by Jiang and Huynh
(2017) to allow for reliable tracklet generation, occlusion handling
and reduction of computation complexity. Considering its application
in unconstrained visual sensor networks, the approach still requires
improvement in the appearance and motion model.

With the word tracklets (Bewley, Ge et al., 2016) bound to define
a set of certain confirmed tracks, methods of association by tracklets
have been introduced (Sheng et al., 2018; Wang et al., 2018a, 2016).
A tracklet confidence-based approach within a hierarchical association
framework was proposed by Chen et al. (2018) for tracking multiple
objects in airborne videos in order to add a level of robustness for
complex video scenes. Experiments suggested a good appearance model
with better results on appearance changes as well as to object re-
identification, but this was hindered by long term occlusions and a
higher false alarm rate. A similar approach which also applied the use
of tracklet confidence was described by Bae and Yoon (2017) by pairing
with a discriminative appearance learning model. The framework in
Fig. 5 (Bae & Yoon, 2017) illustrates the levels of association based on
high confidence (HC) and low confidence (LC). While offering accuracy
and robustness, there is a limitation with this application to linear
models only.

Apart from confidence measurement approaches (Bae & Yoon, 2017,
2017; Liu et al., 2018a), a tracklet affinity function association method
by generalized linear assignment was proposed by Yang et al. (2018a)
for the improvement of sparse representation and tracking consistency.
Another tracklet association approach based on network flow opti-
mization was described by Wu and Li (2016) aimed at preventing
identity switches and recovering missing detections but as the number
of targets increased in the frame, the computational load also increased
exponentially.

While neural network deep learning methods have recently been
popular in object detection and tracking, particularly with YOLO, SSD
and Faster RCNN, it has also expanded to the data association frame-
work with a focus on developing the temporal state. Particularly due
6

to the strong memory component of LSTM (long short-term memory)
modules as well as the effectiveness with non-linear transformation,
LSTM-based data association has been applied to linear assignment
situations as an extension described by Liu et al. (2019) focusing on
the modules temporal functionality for assignment prediction by one
target at a time. A sequence of multiple LSTM networks is designed
for a step-by-step prediction of probability and measurement. Perfor-
mance comparison results demonstrated a more robust and improved
performance time when compared to legacy methods — the Hungarian
Algorithm and JPDA. Zhang et al. (2019) also applied an LSTM based
method in concatenation with a JPDA-RNN to tackle the issue of dense
clutter; however, the paper highlights better performance needs to be
researched in real-time situations due to a trend a delayed initiation and
termination identified during online tracking. Another demonstration
of the LSTM application to data association in deep neural networks
by Yao et al. (2018) focused on the problem of initiation and termina-
tion of object trajectories and noisy output with particle detectors in the
aspect of particle tracking. A frame-by-frame application of a temporal
sliding window is applied using an LSTM layer in the form of an
RNN with the results identifying the ability to capture intricate motion
patterns that are more difficult to identify with traditional models,
though currently the model is only based on a two-frame assignment
approach and needs to be developed for multi-frame approaches.

Considering accuracy (Babaee et al., 2018) and stability (Liu et al.,
2018b) as an optimal vantage point, a method of improving the tem-
poral aspect of object tracking was defined through the use of LSTM’s
(Babaee et al., 2018; Farazi & Behnke, 2017; Xiang et al., 2019) to han-
dle situations like long term occlusions. A combination of LSTM stacks
with YOLO detected objects introduced by Tan et al. (2018) aided
in improving the temporal relationship between frames. By using the
addition of Euclidean distance to calculate the measurement between
objects, the framework allowed for good adaptation to appearance
changes, but the complexity of the network decided the computational
efficiency. Paired with a region-based appearance model, an LSTM
based pose model was illustrated by Xu and Zhou (2018) to measure
the similarity between different identities. The LSTM layer allowed for
improved speed with deep feature extraction, but the model improves
tracking accuracy by adding more association cues. The model also
splits between a hard and easy association step illustrated in Fig. 6 (Xu
& Zhou, 2018)

A Siamese LSTM network proposed by Wan et al. (2018) established
a model for improved state estimation and allowed for interpretation
of both temporal and spatial components non-linearly.

New hierarchical merged techniques aimed at innovation include a
visual appearance affinity model described by Bewley, Ott et al. (2016)
to improve sequential adaptation. The advantage of the model came
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Table 2
Probabilistic Methods with a summary of the advantages and disadvantages for each method.

Technique Advantages Disadvantages

Permutation Matrix Track Association (PMTA) (Lee, Kanzawa et al.,
2018)

Stability, Robustness Customized to a specific scenario

Multi Model Smooth Variable Structure Filter (MMSVSF) (Luo et al.,
2019)

Accuracy, robustness Need more dynamic movements of
surrounding objects

Global Nearest Neighbour (GNN) for Field-of-View Sensors (Cabrera,
2018)

Low number of lost tracks Performance reduces over more objects
entering the experiment

Social Force Model (SFM) within Markov Chain Mote Carlo
(MCMC) (Feng et al., 2016)

Improved localization and cardinality Computational complexity

Structural Constraints Data Association (Yoon et al., 2019) Validated under unexpected camera
motion, reduction in mis-detections and
false positives

Less focus on temporal constraints like
limited video lengths

Multi Mode Particle Filter (PF) Data Association (Ritter et al., 2018) Improved accuracy in detection and
tracking

No method to estimate bias,
enhancement in tracking accuracy is
small

PDAE - elliptical (Godinez & Rohr, 2014) Robust to errors arising from spot
detection, operates well on low samples

Performance is average on low SNR
levels, computational time

Joint Detection and Tracking - Variational Bayesian (JDT-VB) (Lan
et al., 2016)

Improved state estimation No simulation verification

Joint Likelihood Filter (Rasmussen & Hager, 2001) Improvement in handling occlusion Confusion in classification of noise for
some scenarios

Association Log Likelihood (Altendorfer & Wirkert, 2016) Performs well in steady-state scenarios No advantage in predicted track co
variance matrices of arbitrary shape

Diffusion Particle PHD Filter (D-PPHDF)/ Multi Sensor Particle PHD
Filter (MS-PPHDF) (Leonard & Zoubir, 2019)

Speed of accuracy Poor in densely populated scene

Bayesian Filtering for Unmanned Aerial Vehicles (UAV) (Barkley &
Paley, 2017)

Maintains tracker accuracy Average accuracy for motion model of
targets

Sample Based JPDAF (SJPDAF) (Zhang & Tang, 2018) Accuracy improvement with inter-object
occlusion

Computational complexity

Markov Chain Data Association with Joint Integrated PDA (JIPDA)
(Lee et al., 2017b)

Reduced computational time, improved
accuracy in dense clutter

Average results with false track
discrimination and target retention

Poisson Spatial Measurement Model for JPDA (Yang et al., 2018b) Requires no clustering and partitioning Number of target tracks is fixed
Likelihood Based Data Association with Sampling Methods
(Granström, Svensson et al., 2017)

Improved tracking performance Complexity with implementation
efficiency

JPDA for extended target tracking (ETT) (Vivone et al., 2015) High tracking accuracy, limited false
alarm rate, support real time
requirements

Results consider the complete MOT
framework with marine radar data

Improved JPDA (Hamid Rezatofighi et al., 2015) Reduced computational complexity, good
performance with noisy detections and
occlusion

Average speed and not generalized

Multiple Hypothesis JPDA (MH-JPDA) with fixed interval (Stauch
et al., 2017)

Tracking precision and accuracy with
close spaced objects, real-time
functionality

Initial ambiguity

Tracklet level association in MHT (Sheng et al., 2018) Computational efficiency in solving
MWIS problems with MHT

No specific improvement in tracking
performance compared to existing
algorithms

PDAF with compound segmentation technique (Mahemuti et al.,
2016)

Reasonable tracking accuracy with low
density microtubule video

Incorrect tracking estimation with
complicated compound objects

JPDA for automated multi target tracking (Hunde & Ayalew, 2018) High confidence measurement data
association can improve tracking
performance

Reduced performance in more complex
traffic scenarios

PF-PDA-IMM scheme (Chalvatzaki et al., 2018b) Improved accuracy, robustness to
occlusion

Requires development for more complex
motion models

JPDA in trajectory optimization (He et al., 2020b) Single scan approach that reduces
computational burden

Accuracy reduces as the count of
modality increases

MHT in Graph neural networks (Rangesh et al., 2021) Capable of working in real time A difficult estimation problem with
lower particles

JPDA with reinforcement learning (Qu et al., 2020) Shorter execution time and effective in
dense clutter.

Temporal range is set to a limited time
space
from the ability to learn without explicit labelling; however, it currently
runs as offline based only and generates some track fragmentation.
A confidence score based appearance model in a hierarchical data
association framework to accommodate online multiple object tracking
proposed by Liu et al. (2018a) allowed for faster processing time
and accuracy with comparable but not improved results on the MOT
datasets. A Part-based association technique was described by Jiang
et al. (2017) to improve robustness based on appearance, position and
motion, but there is the failure to capture temporal information effec-
tively. Stochastic progressive association across multiple frames coined
SPAAM was introduced by Elliethy and Sharma (2018) which had the
advantage of accuracy with computational efficiency but improvement
7

in the learning of richer spatial information was required. An increased
usage of the Mahalanobis distance paired with the Hungarian algorithm
has is apparent since 2020 in Salscheider (2021, 2021) and Wang et al.
(2020b) confirming a common improvement in accuracy.

In a qualitative aspect, the hierarchical methods are more spread
out compared to probabilistic methods with more techniques offering
accuracy, robustness, speed ad offer a door into more deep learning
architectures. A particular drawback with hierarchical methods is the
computational processing complexity of the network added when mul-
tiplying the number of layers and splitting tasks between multiple
association levels. Fig. 7 illustrates the taxonomy breakdown of the
hierarchical methods mentioned (see Table 3).
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Fig. 5. A proposed framework for Confidence Based Data Association based on High Confidence and Low Confidence Association. These tasks are performed before appearance
learning through deep discriminative methods. The threshold was configured with High Confidence being labelled for values over 0.5, however, the paper suggests that tracking
performance was not affected by this threshold (Bae & Yoon, 2017).
Fig. 6. A High-level flow for Easy Association and Hard Association. At first, a basic affinity matrix based on a basic association metric which then divides into easy and hard
associations according to its basic score. The Hungarian algorithm is then applied to get a final association value (Xu & Zhou, 2018).
Fig. 7. Breakdown of Hierarchical Data Association Methods which start with more parent classifications such as Greedy Association, Tracklet Association, LSTM Based, Hungarian
Algorithm based and other models. The application of multi-layer approaches allows for more research into hybrid approaches which merge two types of methods to obtain better
results. Illustrated by the branch lengths, it is still popular among the use of the Hungarian Algorithm including combinations of the Hungarian Algorithm with other functions.
8



Expert Systems With Applications 192 (2022) 116300L. Rakai et al.
Table 3
Hierarchical Methods with a summary of the advantages and disadvantages for each method.

Technique Advantages Disadvantages

Greedy data association with tracklet linking and particle filters
(Singh et al., 2017)

Focus on high speed performance Slight decrease in qualitative
performance

Hierarchical data association tracking based on tracklet confidence
(Chen et al., 2018)

Better single target tracking with
appearance change and object
re-identification

High false alarm rate of detections and
poor re-identification after long term
occlusion

LSTM and Euclidean distance (Tan et al., 2018) Good adaptation to appearance changes
of objects, fast performance

Average computational efficiency

Visual appearance affinity model (Bewley, Ott et al., 2016) Model can learn without explicit
labelling

Offline based only, some track
fragmentation

Compact data association (two level association with assignment by
Hungarian algorithm) (Piao et al., 2016)

Computationally efficient, robust Accuracy is high based on less noisy
level results, requires a better
appearance model

Tracklet confidence-based data association (Bae & Yoon, 2017) Accuracy, robustness Only applies to linear motions
Part-based matching, linear programming and greedy data
association (Zhang et al., 2018)

High track initiation rate Poor results on occlusion and low
resolution video

Greedy data association with tracklet linking and particle filters
(Jiang & Huynh, 2017)

Reliable tracklet generation, occlusion
handling, linear computational
complexity

Average robustness, requires appearance
and motion model evaluations

LSTM pose model with region-based appearance model (Xu & Zhou,
2018)

Speed with deep feature extraction,
occlusion handling

Requires more tracking accuracy by
adding more association cues

Hungarian algorithm for obstacle fusion and tracking association
(Allodi et al., 2016)

Robust, fast processing time Need improvement in maintaining tracks

Siamese LSTM network (Wan et al., 2018) Accuracy Computational complexity
Discriminative affinity model with Hungarian algorithm (Li et al.,
2017b)

Tracks through occlusion and long
periods of time

Requires more generalization, accuracy
scores are comparable but not
significantly improved

Affinity function with Hungarian algorithm (Riahi & Bilodeau, 2015) Robust, high accuracy High number of ID switches
Tracklet affinity function association by generalized linear
assignment (Yang et al., 2018a)

Improved tracking consistency Low computational efficiency

Confidence score-based appearance model (Liu et al., 2018a) Accuracy, fast processing time,
robustness

Results are comparable on MOT datasets

Part-based data association with IMM tracking (Jiang et al., 2017) Robustness Does not capture temporal information
effectively

Hungarian algorithm with zero-mean Gaussian function (Wu & Li,
2016)

Speed promotion Missing detections lead to false tracking
alarms

Tracklet association by network flow optimization (Wang et al.,
2016)

Prevents identity switches and recover
missing detections

As targets increase, computational speed
decreases, occlusion hinders performance

Stochastic Progressive Association Across Multiple Frames (SPAAM)
(Elliethy & Sharma, 2018)

Accuracy, computational efficiency Challenge with limited spatial details

LSTM-based aggregated mode (Chang et al., 2020) Improved prediction over LSTM some environmental factors make it
difficult to verify testing values

Hungarian algorithm in R-CNN (Daniłowicz, 2020) Used in real time situations Limited information about dealing with
temporal information

Hungarian algorithm for the assignment problem (Meneses et al.,
2020)

improved tracking accuracy and efficient
computation

– IOU and SORT trackers compare a
faster identity switch rate

LSTM in a Graph Neural Network (Weng et al., 2020) improves discriminative feature learning limited information on speed
Mahalanobis distance and Hungarian algorithm (Salscheider, 2021) reduced miss rate and localization error requires some computational time
Adaptive fusion model based on kalman filtering and LSTM (Wang
et al., 2021)

accuracy and speed improvement limited specific information on
robustness

Hungarian algorithm applied in an LSTM framework (Yu et al.,
2020)

Shows stability in both long-term and
short-term

Some noise such as fog creates lesser
performance

Bilinear LSTM and greedy association (Kim et al., 2021) Achieves real time tracking performance Limited information on comparison of
computational cost

LSTM with tracking association (Farhodov et al., 2020) Supports long term tracking in real time
and can work in online mode

Limited information on comparison of
computational cost
3.4. IMM, Kalman filter and Fuzzy data association

Areas of interest covered to solve the data association problem in
multiple object tracking include the use of Interactive Multiple Models
(IMM (Faber et al., 2018; Hu et al., 2020; Kulmon & Stukovska,
2018; Wu & Hong, 2005), the original Kalman Filter (KF) (Jeong et al.,
2014; Sahbani & Adiprawita, 2016) and Fuzzy data association (Li
et al., 2017a; Liu et al., 2020b; Raboaca et al., 2020; Tafti & Sadati,
2010; Xi-yang et al., 2018). A combination of the Kalman filter and
the Mahalnobis distance has been applied frequently in recent MOT
frameworks such as Cantas et al. (2021), Huang et al. (2020), Li et al.
(2020, 2020) and Wang et al. (2020a). To allow a framework to be
more adaptable for online tracking, Xi-yang et al. (2018) introduced
MOANA, formulated through time and space, which applies a track-
ing mode through Kalman filtering. The model is applicable to the
9

adaptation of 3D properties. While the model offers a more robust and
efficient solution, it currently only works with static camera footage.
Also applying properties through the extended version of the Kalman
filter with a bipartite graph model method and Hungarian algorithm
hybrid, Mei et al. (2017) was able to perform multiple target tracking
in real-time but this only applied with the extraction of 2D target
information. A multi-view approach for 3D reconstruction applied an
MCMC based approach with tracklet association described by Tang
et al. (2018a) to offer more efficiency in multi-view tracking, but less
information is provided about computational efficiency. In a similar
environment of multiple pedestrian tracking, an Interactive Multiple
Model (IMM) was combined with the Munkres algorithm to offer a
more robust solution by Jiang and Huynh (2017), but the performance
diminishes as the scene becomes crowded. Another IMM based tracking
association method proposed by Yuan et al. (2017a) combined with
Multiple Hypothesis Testing (MHT) was called IMM-SMHT (Interacting

Multiple Model with a sequential multiple hypothesis test model and
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Fig. 8. Breakdown of other techniques — IMM, Kalman Filter, Fuzzy Association. These include methods which have had some but little presence in recent literature, so they
have been grouped for the purpose of this survey. Though Kalman Filter is a category under the Probabilistic approach, here we identify models that take advantage of Kalman
filtering without using the PDAF approaches.
also offered robustness with added high accuracy but still limited by
a computational cost. Considering the multi-view issue, Wang et al.
(2014) used appearance modelling to for the track association task us-
ing a competitive major feature histogram (CMFH) which is employed
for addressing the problem of disjoint camera views. Wu and Hong
(2005) suggested a combination of the IMM method with Probabilistic
data association to process long video segments and show a better
performance over the Kalman Filter.

A different technique involves using Fuzzy data association to cal-
culate fuzzy association probabilities by design of a Fuzzy Inference
System (FIS) based on affinities of appearance and motion. An approach
by Li et al. (2017a) offered good performance results while Xi-yang
et al. (2018) fused a Kalman filter with maximum entropy intuitionistic
fuzzy data association which becomes a reconstructed intuitionistic
model. Though this method offers good robustness and accuracy results,
the limit of computational cost is not removed.

An older method that still requires a mention is the graph-based ap-
proach (De Sousa & Kropatsch, 2015; Salvi et al., 2013). More popular
in the late 2000s, it has notably been less often used in the last five
years. Gulati et al. (2017) performed a comparison between Random
Finite Sets (RFS) and Factor graphs for multi-sensor corporative local-
ization to allow for better state estimations. According to the paper,
factor graphs actually avoid the task of data association altogether.
Factor graphs display a higher execution time due to offline batch
optimization, but both methods offer improved scalability. Recent ap-
proaches of Graph based methods include a graph similarity model that
focuses on improving robustness and accuracy (Liu et al., 2020a) and
the use of neighbour graphs with the Hungarian algorithm (Liang et al.,
2020). An illustration for the taxonomy of other techniques such as
IMM, Kalman Filter-based and Fuzzy data association is shown in Fig. 8
(see Table 4).

3.5. New techniques

By grouping some new techniques together upon qualitative anal-
ysis, there is more development on accuracy results with a focus on
improving the computational complexity (Elliethy & Sharma, 2018;
Kokul et al., 2015), however, the basis of accuracy is applied to network
training for specific scenarios and discarding the generalization ability.
Hybrid data association techniques to apply the best of both local and
global association features have been proposed by Yang et al. (2017)
10
who determines association as a minimum cost multi-commodity flow
problem to handle online data and scenarios where the number of
objects is large. With a goal to improve performance and overall
accuracy for tracking, the framework did require more definition with
the motion and shape cues to allow for greater stability. In terms of a
minimum cost multi-way solution, Park et al. (2014) applied this data
association method with a Lagrange Dual solution to optimize tracking
between interacting objects. This allowed a model with better general-
ization ability along with accuracy but still adding some computational
complexity. Another hybrid proposal by Dai et al. (2018) applied an
affinity model with the detection-detection association where tracklets
are created based on the detections from individual frames. This created
a better accuracy reading in complex scenarios, but there is still future
work to improve the object interaction model and shape information
models.

Particular challenges in recent years that have gained research
into improving the performance for multiple object tracking involve
crowded scenes of pedestrians or traffic. Dehghan and Shah (2017)
formulated this problem as binary quadratic programming and applied
Frank Wolfe optimization for the association task. The method was
combined with SWAP steps to reduce the computational complexity,
a necessary improvement when the number of objects in the scene
or frame increases over time. With performance and accuracy at the
forefront of improvement, there is a toll taken on computational com-
plexity. An analysis performed by Niedfeldt et al. (2017) applied a
recursive RANSAC approach over a sequential method to allow for
improved parameter estimation over multiple signals and to offer bet-
ter confidence of convergence to the correct solution. The recursive
method provides more simplicity and tracking continuity performance;
however, the parameters are environmentally dependent, which makes
the model poor for generalization.

A simple improvement on robustness came from Steyer et al. (2018)
who experimented on a new particle labelling association method
which made use of low-level particle representation in space defined by
grid cells and object tracks. Speed and computational cost are discussed
less extensively in the paper. Fig. 9 (Steyer et al., 2018) is an illustration
of the particle labelling association within defined grid cells and the
phases of particle labelling for correct tracking.

In the application of a single camera and inter-camera dataset, Tang
et al. (2018b) applied a bottom-up clustering strategy paired with a
loss function resulting in enhanced robustness and speed improvement.
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Table 4
Other Methods with a summary of the advantages and disadvantages for each method.

Technique Advantages Disadvantages

Kalman MOANA : An Online Learned Adaptive Appearance Model
for Robust Multiple Object Tracking in 3D (Xi-yang et al., 2018)

More robust and efficient Only works on static cameras, future
work on moving cameras

Bipartite graph model based method with Hungarian algorithm (Mei
et al., 2017)

Tracks multiple targets in real time Extracts only 2D target information,
future work on 3D features

Kalman filter for multi view object tracking by data association
(MCMC based approach) (Tang et al., 2018a)

Efficiency in multi view tracking Less information on computational
efficiency

IMM IMM with The Munkres Algorithm (Jiang & Huynh, 2017) Robust Cannot handle more complex or
crowded scenes

IMM-SMHT (IMM with sequential multiple hypothesis test) (Yuan
et al., 2017a)

Robustness and high accuracy Computational cost

Fuzzy Fuzzy logic data association (Li et al., 2017a) Better performance Little information on stability
Kalman filter with maximum entropy intuitionistic data association
(Xi-yang et al., 2018)

Robustness and accuracy No information on computational time

Factor Graphs vs RFS framework (Gulati et al., 2017) Scalability improvement and bandwidth
reduction for both methods

RFS approach degrades over an
increasing number of sensors while
factor graphs have a higher execution
time

Kullback–leibler differential entropy equation-based measurement
data association (Hu et al., 2020)

The model is more adaptable with
increased noise

Computational cost increase

Kalman filter with the Mahalanobis distance to evaluate motion
distance (Huang et al., 2020)

Reduces the time costs of data
association using 3D integral image
constraints

Little information on computational
complexity

Self supervised approach to associating objects using Kalman filter
and Mahalanobis distance (Wang et al., 2020a)

Useful suppression of incorrect
associations during self supervised
training

Unclear if human efficiency correlates to
the computational efficiency of the
model

Data association between perception and V2V communication
sensors (Cantas et al., 2021)

Method can be effective for curved
roads and intersections

More tests need to be performed in
complex scenarios and crowded scenes

Extended Kalman filter using IP (innovation projections) (Joerger &
Hassani, 2020)

Lower level of wrong associations Complex input parameters with Lidar

A priority data association policy for multitarget tracking (Zeng
et al., 2020)

Improve performance for risk assessment Performance diminishes with multi
target tracking

Two stage fuzzy logic association integrated with Kalman filtering
(Liu et al., 2020b)

Improve performance with multiple
targets and complex movements

Sometimes false sizes of targets are
generated due to reflections or
disturbance

GSM:graph similarity model for multi-object tracking (Liu et al.,
2020a)

Focuses on improving robustness and
accuracy in association

Comparisons are only made with online
settings for simplicity

Neighbour graph with GCN (graph convolutional networks) (Liang
et al., 2020)

Applies features of the spatio-temporal
domains based on neighbour selection

Requires more research to improve
object detection
Fig. 9. The figure illustrates the particle labelling association concept using grid cells.
This is further described in the paper by Steyer et al. based on the identification of
particle labels to define bounding boxes and updating tracks (Steyer et al., 2018).

Based on a similarity function to be applied on videos from non-
overlapping cameras, Choi and Jeon (2016) focused on accuracy with
re-identification, but the description limits the results on computa-
tional cost and robustness. In a different problem set with partial
views, Wong et al. (2015) employed a clustering-based data association
method as the Dirichlet Process Mixture Model (DPMM) given multiple
camera viewpoints. Given improved results in computational time and
estimation, there was an identification of degradation over longer
temporal states. Combined with sparse representations, a multi-frame
data association using an energy minimization procedure described
by Fagot-Bouquet et al. (2016) offered a robust approach with fewer
association errors but at a computational cost. Basing an association
decision off of a confidence score is not a new technique but the
application in a Partial Least Square method (PLS) described by Lee,
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Kim et al. (2018) improved the evaluation for the confidence of a
tracklet in terms of length and continuity. Though there is an overall
improvement in the performance of the tracker, there is no specific
discrimination detailing the data association aspect as a factor for the
improvement. Rather than a cost function, Jaiswal et al. employed a
gain function which was defined based on the position of the object and
the image intensity to allow for more accuracy but limited to specific
tasks.

To work in a scene with unknown backgrounds, Punchihewa et al.
(2018) proposed a GLMB Joint Object Clutter Model, a filter extracted
from Random Finite Sets (RFS) whose parameters evolve with time.
The results lead to an improved performance rate, but the complexity
increases as the scene become crowded.

Adding the problem of data association into the realm of deep learn-
ing has still been met with some reluctance. A Siamese CNN approach
initiated by Lean-Taixe et al. adds the association task within the CNN
layers by including a patch similarity in the form of a cost function.
While the use of CNN enhances the results in speed, there is more
development required to improve accuracy in rich situations. Adding
to accuracy improvement included an on detection data association
and segmentation approach by Tian et al. (2018) which overall did
not match up to state-of-the-art performances, an enhanced identity
association by Gan et al. (2018) which generated some confusion
during occlusion and interaction with other targets, and a stochastic
optimization method by Granström, Renter et al. (2017) which did not
offer enough information on robustness and generalization (see Fig. 11,
Tables 5–9).
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Table 5
New Methods with a summary of the advantages and disadvantages for each method.

Technique Advantages Disadvantages

Hybrid data association as a min-cost multi commodity flow
problem (Yang et al., 2017)

Improved performance for online
tracking, accuracy

Need more definition on motion and
shape cues

Modified Frank Wolfe algorithm with SWAP steps (Dehghan &
Shah, 2017)

Reduce computational complexity Run time increases as people increases

Recursive RANSAC (Niedfeldt et al., 2017) Simple to implement, efficient, robust Computational complexity
Particle Labelling Association for grid-based object tracking (Steyer
et al., 2018)

Robust Less information on speed and
computation cost

Similarity function based association for non overlapping cameras
(Choi & Jeon, 2016)

Accuracy on re-identification Less information on robustness, speed
and computation

Dirichlet Process Mixture Models (DPMM) - A clustering based data
association (Wong et al., 2015)

Improved estimation and computational
time

Results degrade over longer temporal
states

Multi-frame data association with sparse representation
(Fagot-Bouquet et al., 2016)

Robust, less association errors Computational cost

Hybrid data association with affinity and detection-detection
association (Dai et al., 2018)

Accuracy in complex sequences Need richer interaction model and shape
information model

CNN based data association (Leal-Taixé et al., 2016) Efficiency in speed Need more accuracy in complex
situations

Confidence based data association with Partial Least Squares (PLS)
method. (Lee, Kim et al., 2018)

Improved overall performance The tracking results may not depend on
the association aspect in the paper

Minimum cost multi-way data association with Lagrange Dual
solution (Park et al., 2014)

Accuracy and generalization ability Convergence with polynomial time,
some computational complexity

Gain functions for data association (Jaiswal et al., 2018) Accuracy No generalization yet - applies only to a
specific trained task

GLMB Joint Object Clutter model (Punchihewa et al., 2018) Improved performance rate More complexity as the scene becomes
crowded

On detection data association and segmentation (Tian et al., 2018) Accurate segmentation results Poor performance with overall
comparison

Enhanced identity association (Gan et al., 2018) High accuracy and precision with low ID
switches

Confusion by occlusion and interaction
with other targets, not generalized.

Stochastic Optimization (Granström, Renter et al., 2017) Accuracy, computationally efficient Less information on robustness and
generalization

Bottom up clustering strategy with loss function (Tang et al., 2018b) Enhanced robustness, speed
improvement and re-identification

Computational complexity

Tracklets (long term and short term) (Yang et al., 2020) Learns better appearance features for
more effective association

Cannot be used on real time situations

Attention with transformer network data association (Hung et al.,
2020)

Improves results with occlusion Requires improvement with
spatio-temporal dependancies

TransTrack, Box association with Kuhn–Munkres (KM) algorithm
(Sun et al., 2020)

Improves accuracy Limited information about long term
tracking

Attention association with TrackFormer (Meinhardt et al., 2021) Attention operations improve appearance
modelling and improves segmentation

Limited information about computational
cost

DASOT: a unified framework integrating data association (Chu
et al., 2020)

Focuses on improving computational cost
through learning discriminative features

Limited information on adaptability to
long term tracking

Data association using geometry priors (Chen et al., 2020) Generates a combined cost matric to
improve accuracy

Requires further study for the inclusion
of more sensor information

Embedding association using attention (Guo et al., 2021) Improves robustness and tracking
performance

Requires further study for computational
efficiency
Fig. 10. The bar graph illustrates the sub techniques used in recent publications and colour coded by year ranging from 2015 to the most recent papers published in 2021. It
further provides a better distinction of the more prominent methods utilized in the current research area of multiple object tracking — particularly the Hungarian algorithm, JPDA
and LSTM modules displaying greater popularity. An association method which also demonstrates research growth in applications over the last four years is tracklet-based data
association solutions and the integration of the Kalman filter.
12
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Table 6
A Qualitative analytical summary of Probabilistic methods based on stability, accuracy of results described in the publication, robustness, cardinality and speed based on
computational complexity.

Technique Stability Accuracy Robust Cardinality Speed

Permutation Matrix Track Association (PMTA) (Lee, Kanzawa et al., 2018) Yes Yes
Multi Model Smooth Variable Structure Filter (MMSVSF) (Luo et al., 2019) Yes Yes
Global Nearest Neighbour (GNN) for Field-of-View Sensors (Cabrera, 2018) Yes
Social Force Model (SFM) within Markov Chain Mote Carlo (MCMC) (Feng et al.,
2016)

Yes

Structural Constraints Data Association (Yoon et al., 2019) Yes
Multi Mode Particle Filter (PF) Data Association (Ritter et al., 2018) Yes
PDAE - elliptical (Ritter et al., 2018) Yes
Joint Detection and Tracking - Variational Bayesian (JDT-VB) (Lan et al., 2016) Yes
Joint Likelihood Filter (Rasmussen & Hager, 2001) Yes
Association Log Likelihood (Altendorfer & Wirkert, 2016) Yes
Diffusion Particle PHD Filter (D-PPHDF)/ Multi Sensor Particle PHD Filter
(MS-PPHDF) (Leonard & Zoubir, 2019)

Yes Yes

Bayesian Filtering for Unmanned Aerial Vehicles (UAV) (Barkley & Paley, 2017) Yes
Sample Based JPDAF (SJPDAF) (Zhang & Tang, 2018) Yes
Markov Chain Data Association with Joint Integrated PDA (JIPDA) (Lee et al., 2017b) Yes Yes
Poisson Spatial Measurement Model for JPDA (Yang et al., 2018b) Yes
Likelihood Based Data Association with Sampling Methods (Granström, Svensson
et al., 2017)

Yes

JPDA for extended target tracking (ETT) (Vivone et al., 2015) Yes Yes
Improved JPDA (Hamid Rezatofighi et al., 2015) Yes Yes
Multiple Hypothesis JPDA (MH-JPDA) with fixed interval (Stauch et al., 2017) Yes Yes
Tracklet level association in MHT (Sheng et al., 2018) Yes
PDAF with compound segmentation technique (Mahemuti et al., 2016) Yes
JPDA for automated multi target tracking (Hunde & Ayalew, 2018) Yes
PF-PDA-IMM scheme (Chalvatzaki et al., 2018b) Yes Yes
JPDA with tensor decomposition (Krishnaswamy & Kumar, 2018) Yes
JPDA with trajectory optimization (He et al., 2020b) Yes Yes
MHT in Graph neural network (Rangesh et al., 2021) Yes Yes
JPDA with reinforcement learning (Qu et al., 2020) Yes Yes
Table 7
A Qualitative analytical summary of Hierarchical methods based on stability, accuracy of results described in the publication, robustness, speed of results and computational
complexity.

Technique Stability Accuracy Robust Speed Comp. Efficiency

Greedy data association with tracklet linking and particle filters (Singh et al., 2017) Yes
Hierarchical data association tracking based on tracklet confidence (Chen et al.,
2018)

Yes

LSTM and Euclidean distance (Tan et al., 2018) Yes Yes
Visual appearance affinity model (Bewley, Ott et al., 2016) Yes
Compact data association (two level association with assignment by Hungarian
algorithm) (Piao et al., 2016)

Yes Yes

Tracklet confidence-based data association (Bae & Yoon, 2017) Yes Yes
Part-based matching, linear programming and greedy data association (Zhang et al.,
2018)

Yes

Greedy data association with tracklet linking and particle filters (Jiang & Huynh,
2017)

Yes Yes

LSTM pose model with region-based appearance model (Xu & Zhou, 2018) Yes Yes
Hungarian algorithm for obstacle fusion and tracking association (Allodi et al., 2016) Yes Yes
Siamese LSTM network (Wan et al., 2018) Yes
Discriminative affinity model with Hungarian algorithm (Li et al., 2017b) Yes
LSTM-based aggregated mode (Chang et al., 2020) Yes
Hungarian algorithm in R-CNN (Daniłowicz, 2020) Yes Yes Yes
Hungarian algorithm for the assignment problem (Meneses et al., 2020) Yes Yes Yes
LSTM in a Graph Neural Network (Weng et al., 2020) Yes
Mahalanobis distance and Hungarian algorithm (Salscheider, 2021) Yes
Adaptive fusion model based on kalman filtering and LSTM (Wang et al., 2021) Yes Yes
Hungarian algorithm applied in an LSTM framework (Yu et al., 2020) Yes Yes
Bilinear LSTM and greedy association (Kim et al., 2021) Yes Yes
LSTM with tracking association (Farhodov et al., 2020) Yes Yes Yes
4. Discussion

Still being one of the more popular methods to apply in a data
association task, Probabilistic methods are still being used and up-
graded/ extended to suite the scenario or video environment. While
older algorithms like Global Nearest Neighbour (GNN), Particle and
Kalman Filters, and Multiple Hypothesis Testing (MHT) are still used
in similarity comparison or distance calculation, more emphasis has
been placed on the extension or improvement of the Joint Probabilistic
13

Data Association Method resulting in greater performance accuracy
and robustness. Though accuracy is a common factor of improvement,
the probabilistic approaches have shown more options in improving
computational complexity over other categories. This indicates an im-
portant element when considering a real-time performing framework in
the Multiple Object Tracking scenario. As illustrated by Fig. 10, JPDA
still proves to be the most widely applied probabilistic technique and
currently matches upcoming deep learning applications of LSTM within
new research.

Hierarchical association methods have also proven to be still a pop-

ular technique with many applications using the multi-level technique
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Table 8
A Qualitative analytical summary of other methods based on stability, accuracy of results described in the publication, robustness, speed of results and computational complexity

Technique Stability Accuracy Robust Speed Comp. Efficiency

MOANA : An Online Learned Adaptive Appearance Model for Robust Multiple Object
Tracking in 3D (Xi-yang et al., 2018)

Yes Yes

Bipartite graph model based method with Hungarian algorithm (Mei et al., 2017) Yes
Kalman filter for multi view object tracking by data association (MCMC based
approach) (Tang et al., 2018a)

Yes

IMM with The Munkres Algorithm (Jiang & Huynh, 2017) Yes
IMM-SMHT (IMM with sequential multiple hypothesis test) (Yuan et al., 2017a) Yes Yes
Fuzzy logic data association (Li et al., 2017a) Yes
Kalman filter with maximum entropy intuitionistic data association (Xi-yang et al.,
2018)

Yes Yes

Factor Graphs vs RFS framework (Gulati et al., 2017) Yes
Kullback–leibler differential entropy equation-based measurement data association
(Hu et al., 2020)

Yes Yes Yes

Kalman filter with the Mahalanobis distance to evaluate motion distance (Huang
et al., 2020)

Yes Yes Yes

Self supervised approach to associating objects using Kalman filter and Mahalanobis
distance (Wang et al., 2020a)

Yes Yes

Data association between perception and V2V communication sensors (Cantas et al.,
2021)

Yes Yes

Extended Kalman filter using IP (innovation projections) (Joerger & Hassani, 2020) Yes
A priority data association policy for multitarget tracking (Zeng et al., 2020) Yes
Two stage fuzzy logic association integrated with Kalman filtering (Liu et al., 2020b) Yes
GSM:graph similarity model for multi-object tracking (Liu et al., 2020a) Yes Yes
Neighbour graph with GCN (graph convolutional networks) (Liang et al., 2020) Yes
Table 9
A Qualitative analytical summary of new methods based on stability, accuracy of results described in the publication, robustness, speed of results and computational complexity.

Technique Stability Accuracy Robust Speed Comp. Efficiency

Hybrid data association as a min-cost multi commodity flow problem (Yang et al.,
2017)

Yes

Modified Frank Wolfe algorithm with SWAP steps (Dehghan & Shah, 2017) Yes
Recursive RANSAC (Niedfeldt et al., 2017) Yes Yes
Particle Labelling Association for grid-based object tracking (Steyer et al., 2018) Yes
Similarity function based association for non overlapping cameras (Choi & Jeon,
2016)

Yes

Dirichlet Process Mixture Models (DPMM) - A clustering based data association
(Wong et al., 2015)

Yes Yes

Multi-frame data association with sparse representation (Fagot-Bouquet et al., 2016) Yes Yes
Hybrid data association with affinity and detection-detection association (Dai et al.,
2018)

Yes

CNN based data association (Leal-Taixé et al., 2016) Yes
Confidence based data association with Partial Least Squares (PLS) method. (Lee,
Kim et al., 2018)

Yes Yes

Minimum cost multi-way data association with Langrange Dual solution (Park et al.,
2014)

Yes

Gain functions for data association (Jaiswal et al., 2018) Yes
GLMB Joint Object Clutter model (Punchihewa et al., 2018) Yes Yes
On detection data association and segmentation (Tian et al., 2018) Yes
Enhanced identity association (Gan et al., 2018) Yes
Stochastic Optimization (Granström, Renter et al., 2017) Yes Yes
Bottom up clustering strategy with loss function (Tang et al., 2018b) Yes Yes
Tracklets (long term and short term) (Yang et al., 2020) Yes
Attention with transformer network data association (Hung et al., 2020) Yes Yes Yes
TransTrack, Box association with Kuhn–Munkres (KM) algorithm (Sun et al., 2020) Yes
Attention association with TrackFormer (Meinhardt et al., 2021) Yes
DASOT: a unified framework integrating data association (Chu et al., 2020) Yes Yes Yes Yes
Data association using geometry priors (Chen et al., 2020) Yes
Embedding association using attention (Guo et al., 2021) Yes Yes
to fuse advantages from multiple historical techniques. Clearly, the use
of the Hungarian algorithm is still prevalent in the similarity function
task, and distance calculation also highlighted in Fig. 10. Compared
to probabilistic methods, the positive improvements in performance is
more evenly distributed between accuracy, robustness and speed but
little improvement or less mention on computational complexity. A
confidence score based appearance model (Yang et al., 2018a) checked
the most performance boxes (accuracy, robustness and computational
complexity) among all the method comparisons combined. A par-
ticularly notable element is the improvement in handling temporal
information with hierarchical methods such as the use of LSTM’s for
improved performances in re-identification. The bar graph in Fig. 10
14
further demonstrates the growing popularity with the use of LSTM mod-
ules (particularly with the incorporation of the Hungarian algorithm)
because of their robust ability to fit into a deep learning multiple object
tracking framework and the strong ability to handle the temporal state.

For the case of other techniques spanning IMM, Kalman Filter and
Fuzzy data association, results were more swayed to the improve-
ment of robustness and speed performance with less to no specific
information on the stability and computational efficiency. The results
comparison does illustrate the use of Kalman Filter merged with other
methods such as the Hungarian algorithm, or an adaptive appearance
model can enhance the speed performance, which makes it a good
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Fig. 11. The graph illustrates the count of papers categorized by year of publication and discussed under three major techniques discussed — Probabilistic, Hierarchical and
Others. It provides a cumulative count for comparison purposes, simply indicating the high frequency between Hierarchical and Probabilistic methods of data association between
2015 and 2019. Patterns in recent research illustrate an increasing count of other techniques outside the traditional methods.
consideration when focusing on speed improvement for an MOT frame-
work. Since 2020, there has been more use of the Kalman filter with a
choice between the Mahalanobis distance or the Hungarian algorithm
as a means of data association to improve computational efficiency.

The evaluation of new techniques is populated by hybrid approaches
which try to incorporate best elements from left and right categories
(for example, local and global associations). Maintaining the trend of
previous techniques, there is still a heavy focus on the accuracy im-
provement results with almost all the new techniques reviewed show-
ing some form of improvement in accuracy measurements compared to
state-of-the-art performances. On another hand, there is no documented
improvement on the stability of the method with some advancements
showing in robustness, speed and computational efficiency.

As more research is being conducted to improve the computational
speed of Multiple Object Tracking solutions, there is still a hole in
the existing literature that covers a model solution which can verify
performance improvements in all the measurement areas highlighted
for this paper. Though accuracy is highlighted as the most significantly
improved area within recent years, the uneven distribution of results
shows that the balance of accuracy and speed still needs more work.
For my future work, there are considerations to work on a hybrid
framework that can best work with spatial and temporal information.
To that end, using elements within the Hierarchical category such as
enhancements to LSTM and gated solutions would be of key interest in
regards to addressing both spatial and temporal parameters to support
longer time associations.

5. Conclusion

In this paper, we compacted a summary and review of data asso-
ciation tasks proposed within recently published visual multiple object
tracking frameworks and classified them under Probabilistic, Hierarchi-
cal, IMM, Kalman Filter, Fuzzy Association and New Technique based
approaches. The advantages and disadvantages for each model were
tabulated along with a performance comparison summary. The aim
of this review was to organize models based on key technologies or
procedures in order to perform better comparison evaluations. The
detachment of the data association task for object tracking to be
analysed and improved as an internal model confirms its importance in
performance improvement. A breakdown of performance metrics such
as the qualitative table analysis can give rise for future researchers
15
to measure and compare the association task alone in a similar as-
pect. The review focused on algorithms applied particularly to the
tracking of multiple objects in traffic surveillance video (either single
or multi-camera based) and identified key weaknesses in appearance
modelling, computational complexity and the struggle to enable a
genuinely real-time performance.

Single Object Tracking has made leaps in improvement towards
accuracy and real-time performance, but this has not completely trans-
lated well to the tracking of multiple objects. Research has shown a
trend of using successful single object tracking methods and converting
them into an MOT framework with the help of some data associa-
tion algorithm to accurately maintain multiple tracks and detections
simultaneously. The significance of this survey was to identify new
techniques that have been developed and old techniques that have been
modified to suit the task of successfully tracking multiple objects.

While some literature has covered reviews on the Multiple Object
Tracking frameworks, our paper focuses on a subsection of the frame-
work to better understand how we can improve separate components of
a full framework to obtain better results. Since there already exist many
reviews on the Object detection phase, there were still fewer reviews
on data association in MOT itself previously, though few surveys were
conducted with a limited reference list. Our paper tries to cover a wider
analysis of recently published papers to identify a better indication of
the MOT development direction.

Our qualitative analysis found a large number of publications still
using Probabilistic and Hierarchical approaches due to their successful
improvements in accuracy measurements and a more even distribution
in positive results between stability, robustness and speed. A grouping
of new techniques also demonstrated a focus on accuracy improve-
ment results. In the near future, a trend is leaning towards a higher
application of hierarchical methods due to its adaptability of hybrid
approaches and its support for more long-term memory and long term
association solutions.

While a key performance aspect for accuracy has been improved
recently, it comes at the cost of having a situation or object-specific
model, which becomes difficult to generalize. If the reader finds a par-
ticular model or technique interesting, they can refer to the referenced
organization tables for information on the source papers.
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