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Benchmark Data and Method for Real-Time
People Counting in Cluttered Scenes

Using Depth Sensors
Shijie Sun , Naveed Akhtar , Huansheng Song, Chaoyang Zhang, Jianxin Li , and Ajmal Mian

Abstract— Vision-based automatic counting of people has wide-
spread applications in intelligent transportation systems, security,
and logistics. However, there is currently no large-scale public
dataset for benchmarking approaches on this problem. This
paper fills this gap by introducing the first real-world RGB-D
people counting dataset (PCDS) containing over 4500 videos
recorded at the entrance doors of buses in normal and cluttered
conditions. It also proposes an efficient method for counting peo-
ple in real-world cluttered scenes related to public transportations
using depth videos. The proposed method computes a point cloud
from the depth video frame and re-projects it onto the ground
plane to normalize the depth information. The resulting depth
image is analyzed for identifying potential human heads. The
human head proposals are meticulously refined using a 3D human
model. The proposals in each frame of the continuous video
stream are tracked to trace their trajectories. The trajectories are
again refined to ascertain reliable counting. People are eventually
counted by accumulating the head trajectories leaving the scene.
To enable effective head and trajectory identification, we also
propose two different compound features. A thorough evaluation
on PCDS demonstrates that our technique is able to count people
in cluttered scenes with high accuracy at 45 fps on a 1.7-GHz
processor, and hence it can be deployed for effective real-time
people counting for intelligent transportation systems.

Index Terms— People counting, intelligent transportation, com-
puter vision, large-scale data, cluttered scenes, RGB-D videos.

I. INTRODUCTION

AUTOMATIC people counting in real-time has multi-
ple applications in intelligent public transportation sys-

tems [1], [2], [3], security, surveillance, logistics and resource
management [4]. One effective method to reliably accomplish
this task is to directly analyze continuous video stream of the
region of interest, and perform automatic counting of people
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in those videos. For intelligent public transportation systems,
such as buses with on-line monitoring, knowing the number
of people entering and leaving the transport can be used in
e.g. dynamic planning to avoid congestion. Public Transport
Authorities can exploit the fundamental information of pas-
senger congestion to build optimal bus scheduling models [5].
It also promises significant economic benefits by improving
transportation scheduling in accordance with human traffic on
stations at different hours of operation.

Computer Vision techniques are well-suited to the problem
of automatic people counting for public transportations. How-
ever, using conventional RGB videos for this purpose is chal-
lenged by multiple issues resulting from real-world conditions
such as clutter, occlusions, illumination variations, handling
shadows etc. In comparison to the conventional video systems,
RGB-D cameras (e.g. Kinect V1 [6], Prime Sense Camera [7])
can mitigate these issues by providing ‘depth’ information
of the scene in addition to its color video. Nevertheless,
effective people counting in real-world conditions using depth
information still remains a largely unsolved problem due to
noise and occlusion [8].

Vision-based people counting is a comprehensive task that
involves object detection, recognition, and tracking. Exist-
ing approaches in this area can be broadly categorized into
three classes: (a) regression-based methods, e.g. [9], [10]
(b) clustering-based methods, e.g. [11], [12], and (c) detection-
based methods, e.g. [13], [14]. Regression-based methods aim
at learning a regression function using features of detection
regions and exploit that for counting. Clustering-based meth-
ods track a set of features of target objects, and cluster their
trajectories for counting them. Detection-based methods have
a common pipeline, comprising foreground extraction, target
localization, tracking, and trajectory classification. We can
further divide these methods based on the data types they
use e.g. color/depth/hybrid video methods (see Sec. II for
the details). Although useful, the above mentioned approaches
face some common problems while counting people under
practical conditions in real-time, which include; restriction
of camera angles [15]–[17]; computational inefficiency [18],
and failing to handle cluttered scenes [19]. In this work,
we propose a novel method for counting people using depth
sensors that addresses these issues.

Moreover, to the best of our knowledge, there is no large-
scale public dataset currently available to benchmark methods
for real-world people counting. Hence, this paper fills this gap
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Fig. 1. Schematics of the proposed approach. The RGB-D camera provides color and depth video streams. The proposed method uses a depth frame (ID )
to extract the foreground for which 3D-point cloud is computed. The point-cloud is orthogonally projected onto the ground plane to generate a height image.
Multiple potential head locations in the height image are computed by analyzing object features. These potential head proposals are refined and tracked
continuously to count people entering or exiting a bus door.

by introducing the first large-scale dataset for counting people
in real-world scenes of bus entrance/exit doors. The dataset,
called People Counting DataSet (PCDS) contains 4, 689
videos acquired with the Kinect V1 camera [6] that contains
RGB and depth sensors. The dataset can be publicly down-
loaded using the following URL (https://github.com/shijieS/
people-counting-dataset.git). Each video in the dataset is
labeled with the number of people entering or exiting the bus
door. The data has been collected on three different bus routes
at different times of the day up to 6 different days, and presents
large variations in terms of illumination, occlusion, clutter and
noise. Our real-time people counting technique is thoroughly
evaluated using the PCDS. The proposed method capitalizes
on the depth video stream of the dataset to solve people
counting problem. It is emphasized that whereas our method
exploits the depth data for its inherent robustness against
the real-world noise in terms of e.g. shadows, illumination
variations; PCDS provides complete RGB-D videos for the
broader research community.

Fig. 1 illustrates the pipeline of the proposed method. Our
approach assumes the setting where the camera is mounted on
top of the area to be monitored (see ‘Camera Calibration’ in
the figure). This is the most common setting in scenarios like
bus doors, corridors, entrances/exits to market places etc. After
retrieving the depth video stream from the input, we subtract
the scene background using a proposed procedure for the
real-time performance of our approach. A 3D-point cloud
of the foreground is computed from the depth information
and then re-projected orthogonally onto the ground plane for
effective segmentation. For each video frame, we analyze its
projected height image for the presence of potential human
heads while employing a 3D-human model to refine those
proposals. The refined proposals are tracked to compute
the head trajectories that are further refined and continu-
ously monitored in our approach to count people entering
or leaving the buses. To achieve our objective, we also

introduce two discriminative feature vectors for head detection
in height images and trajectory tracking in frame sequences.
Our approach is evaluated using PCDS, and achieves up to
92% accuracy for the real-world bus videos while enabling
processing at 45 fps on a relatively less powerful 1.7GHz
Intel processor with 2GB RAM. These results are significant
since people counting is a challenging problem and our method
can achieve real-time performance in practical conditions with
minimal computational resources.

This paper is organized as follows. The related work is
reviewed in Sec. II followed by Sec. III which describe the
published dataset named PCDS. In Sec. IV, we introduce the
proposed approach for people counting in cluttered environ-
ment. The experiments and results are provided in Sec. V.
In Sec. VI, we draw the conclusion.

II. RELATED WORK

The problem of people counting is often seen from two
different perspectives: (a) Region of Interest (ROI) count-
ing [4], [20]–[22], and (b) Line of Interest (LOI) count-
ing [23]. The former deals with counting people in specific
regions (e.g. in playgrounds), whereas the latter aims at
counting the number of people ‘passing through’ a certain
region (e.g. through doorways). This work deals with the
LOI counting. Many methods for LOI counting have been
proposed, which can be divided into three major categories:
1) regression-based methods, 2) clustering-based methods, and
3) detection-based methods. Below, we review literature under
these categories with emphasis on detection-based methods
because of their close relevance to the proposed approach.

A. Regression-Based Methods

The main objective of the regression-based methods is to
learn a regression function as the representation of changes
in a scene which indicates passing of a pedestrian. Under the
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paradigm of regression-based approach, Barandiaran et al. [9]
used a single RGB camera to count people by the state change
of virtual counting lines. Del Pizzo et al. [14] proposed a
method which divides the detection region into stripes and
counts people by monitoring the change of state for these
stripes without people head detection and object tracking steps.
Fradi and Dugelay [10] used Gaussian Mixture Model (GMM)
to extract the foreground and used Gaussian Process regression
to learn the correspondence between frame-wise features and
the number of persons. Benabbas et al. [24] proposed a method
which accumulates image slices and estimates the optical flow.
They applied a linear regression model to blob features which
are extracted by an on-line blob detector to get the position,
velocity, and orientation of the pedestrian. Cong et al. [23]
estimated the number of pedestrians passing through a line
by quadratic regression with the number of weighted pixels
and edges which are extracted from the flow velocity field.
Whereas useful, one common drawback of the above methods
is that they place hard restrictions on camera installation angles
and the scene itself, which compromises their practical value.

B. Clustering-Based Methods
Clustering based methods simultaneously track multiple

features of objects e.g. key points or people component, and
subsequently count people by clustering feature trajectories.
For instance, Antonini et al. [11] clustered trajectories of
visual features and then used the number of clusters for
counting people. Topkaya et al. [12] used features based
on spatial, color and temporal information and clustered
the detected feature trajectories by Dirichlet Process Mix-
ture Models (DPMMs) [25]. They used Gibbs sampling to
estimate an arbitrary number of people or groups in their
approach. Brostow and Cipolla [26] proposed a method that
first tracks simple image features and then probabilistically
groups them into clusters based on space-time proximity and
trajectory coherence through the image space. Rabaud and
Belongie [27] used KLT tracker [28] to track feature points,
and segmented the set of trajectories by a learned object
descriptor.

C. Detection-Based Methods
The approaches that fall under this category share a common

sequential processing pipeline which goes as follows. First,
foreground is extracted from the video stream, then the objects
of interest are detected and tracked. The tracked trajectories
are subsequently classified to count the objects of interest.
The detection-based methods can be further divided into three
different groups based on the underlying data modalities,
namely 1) RGB video methods, 2) Depth video methods, and
3) Hybrid methods. We also include an additional category
in our review that includes approaches employing the fast
emerging deep learning framework.

1) RGB Video Methods: Using RGB videos is more popular
in people counting literature because of easy availability of
color video cameras. Zeng and Ma [13] detected head-shoulder
patterns in RGB videos by combining multilevel HOG fea-
tures [29] with multilevel LBP features [30]. They used
PCA [31] to reduce the dimensionality of the multilevel

HOG-LBP feature set, and finally tracked the head-shoulder
patterns to count people. Antić et al. [32] proposed a people
segmentation, tracking, and counting system by using an
overhead mounted camera. Garcia et al. [33] also developed
an RGB system for counting people in supervised areas. Their
method is based on finding heads of people by a circular pat-
tern detector and tracking them using Kalman filter [34]. Their
approach also performs the final counting using the tracked
trajectories. Chen et al. [15] used a vertical RGB video-camera
to count a crowd of moving people by segmenting the crowd
based on the frame difference method [35]. Their approach
extracts features to describe the individual patterns, and tracks
the individuals for counting. Kurilkin et al. [36] compared
different people detectors in their study.

The methods described above are likely to suffer from
critical failures when the scenes become complicated due to
shadows, light changes, compound objects, occlusion, and
the presence of significant background texture. To alleviate
these problems, researchers exploit stereo cameras which
can provide the third dimension information. For instance,
Terada et al. [37] proposed one of the first approaches for
stereo camera based people counting in RGB video regime.
They detected people using max points, tracked them with
template matching and finally used the two measurements
from the stereo vision for counting. In a related approach,
Kristoffersen et al. [38] used two thermal cameras to recon-
struct 3D points and proposed an algorithm for pedestrian
counting based on clustering and tracking of the 3D point
clouds. However, in their approach, the cost of depth computa-
tion remains high, which makes it difficult to use the approach
in real-time with low computational power devices.

2) Depth Video Methods: With the popularity of RGB-D
cameras; such as Kinect V1/V2 [6] and Prime-Sense [7],
depth videos are also becoming popular in people counting
applications. Zhang et al. [39] proposed to use a so-called
‘water filling method’ to detect people and counting them
by the virtual line in a depth image. Barandiaran et al. [9],
and later Pizzo et al. [14], [40] proposed approaches that
are based on detection without tracking. These approaches
detect changes in scene states across a virtual line, where
the scene is divided by multiple stripes. The state of the
scene changes when people pass by, thereby enabling people
counting. Rauter [41] introduced the Simplified Local Ternary
Patterns (SLTP) that are used to describe a human head. They
trained an SVM using SLTP and tracked human heads with
the nearest neighbor association methods. Vera et al. [42]
proposed a network of cameras to count people. They devised
a head detection method based on morphology geodesic recon-
struction [43] and performed tracking using the Hungarian
algorithm [44]. Their approach combines tracks generated by
multiple cameras and the final count is based on the length
of the combined track. Li et al. [16] proposed an embedded
framework for real-time top-view people counting. They used
the Kinect camera and the Jetson TK1 board [45] to detect
human heads using the water filling technique [39]. Their
approach also uses the nearest neighbor association method
for tracking. Enrico Bondi et al. [46] introduced a framework
for real-time people counting which follows the sequence of
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Fig. 2. Representative RGB and depth images of different scenarios in PCDS. (a) Normal one-person entry. (b) Multiple people using the same door for
entering and disembarking. (c) Noisy sensor data. (d) Multiple people queuing with partial occlusion. PCDS contains multiple videos for each case shown.

background removal, head detection and tracking the projected
heads. Whereas promising, their framework drastically per-
forms in complicated scenarios where other head-like objects
also appear in the scenes.

3) Hybrid Methods: Combining the advantages of RGB
and depth data streams are well documented in related prob-
lems, e.g. action recognition [27]. Therefore, few methods
have also used the hybrid approach in people counting. For
instance, Gao et al. [17] detected head candidates in depth
videos by water filling method and refined these candidates
by training an SVM classifier using HOG features of the
frame in RGB videos. Their approach eventually generates
a set of trajectories by the nearest distance between the head
candidates and the previous tracks. Liu et al. [47] also used
RGB-D camera for detecting people. Their approach projects
people into a virtual plane and trains an SVM classifier using
features that are used for detecting the upper body of humans.
Zhang et al. [48] proposed head detection by blob detection
in depth frames and projected the blobs into the 3D space.
Their approach filters the candidate blobs for heads by physical
constraints and employs the histogram of multi-order depth
gradient (HMDG) features and joint histogram of color and
height (JHCH) features to train an SVM classifier. The trained
SVM is used to classify the candidate blobs as heads. However,
their approach remains sensitive to occlusion.

4) Deep Learning-Based Methods: Recently, Deep Learn-
ing [49]–[51] has demonstrated great success in object detec-
tion and classification tasks [52], which has also motivated
researchers to employ it for the problem of people counting.
For instance, Liu et al. [18] proposed a people counting
system based on Convolutional Neural Network (CNN) [53]
and Spatio-Temporal Context (STC) model [54]. The CNN
model is used to detect people whereas the STC model is used
to track heads of moving people. Similarly, Wei et al. [55]
proposed a framework based on supervised learning. They
extracted spatio-temporal multi-features by joining super-pixel
based multi-appearance features and multi-motion features,
and then fused the multi-features with the features extracted
from the VGG-16 model [56].

D. RGB-D Datasets
One of our major contributions is in introducing the first

large-scale RGB-D dataset for the problem of people counting

in outdoor settings. Indeed, a few RGB-D public datasets
already exist for the related problems of e.g. people detec-
tion [57], people tracking [58], and estimating size of inho-
mogeneous crowd [4]. However, to the best of our knowledge,
currently no large-scale RGB-D dataset exists for counting
people at entrances/exits in outdoor settings. The unique
setup adopted in this work makes the proposed data useful
for developing techniques that find application in intelligent
transport systems, surveillance, security and logistics etc.

III. PEOPLE COUNTING DATASET (PCDS)

In this Section, we present the People Counting
DataSet (PCDS) introduced for the problem of people counting
in real-world conditions. The dataset is publicly available
for download at https://github.com/shijieS/people-counting-
dataset.git. The provided URL also contains further explana-
tion of the proposed dataset. Below, we focus on the most
relevant details.

A. Settings and Data Taxonomy

The data consists of videos of bus-door scenes recorded
using Kinect V1 camera [6]. The camera is mounted on the
ceiling of (front/back) doors of different buses, and captures
people entering or exiting through the doors. Fig. 2 shows
four representative scenes from the dataset. Due to the real-
world scenarios, complexity of the data is apparent from
the figure. Note that our dataset and method (Sec. IV) also
account for passengers entering and leaving through the same
door simultaneously, as shown in Fig. 2b. In comparison
to the existing related datasets [14], [39], videos in PCDS
are recorded by the camera with a pitch angle that is not
necessarily vertical to the ground plane.

We divide the videos in the dataset based on the bus
route numbers. The dataset is recorded for three different bus
routes, namely No. 25, No. 301 and No. 106 in the cities
of Xi’An, XiNing and YinChuan, respectively in China. The
data samples cover all the bus stops in the complete circuit
route of the buses. For No. 25, the videos have been collected
on 6 different days. For No. 301 and No. 106, the number
of days are 5 and 4 respectively. For each day, we collected
data for the front door as well as the back door. Thus,
in total, there are 30 different scenes in our dataset. We can
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Fig. 3. Structure of the people counting dataSet (PCDS). The root
directory contains 30 scenes, with two subdirectories each. Each subdirec-
tory either contains noisy scenes (denoted by N+) or clean/normal scenes
(denoted by N−). The 3rd-level of directories contains crowded (i.e., C+) or
un-crowded (i.e., C−) scenes.

TABLE I

THE NUMBER OF PEOPLE IN PCDS

further sub-categorize the videos of these scenes based on their
noise level and crowd in the scene. In the above mentioned
URL for the dataset, we organize the dataset according to
these measures. In Fig. 3, we provide the folder structure
of the proposed dataset. We denote the noisy/clean scenes
with N+/N−, and crowded/un-crowded scenes by C+/C−.
As an example, a noisy-crowded scene is denoted by N+C+
according to the adopted notation.

The rationale of dividing the dataset into noisy and clean
videos is that Kinect V1 camera is sensitive to illumination
conditions. For strong illumination, there is often noise in the
videos, as can also be observed in Fig. 2. The videos in our
dataset are mainly recorded in either direct sunlight or diffused
sunlight, resulting in a natural division of corresponding levels
of noise. Similarly, the division of videos according to conges-
tion in the scenes is also natural. During rush hours, multiple
people are generally passing through the bus doors. On the
other hand, sequential entry with clear separation between
people is observed during normal conditions.

In light of the division provided in Fig. 3, one can expect
the following from the four possible sub-categories for each
scene in the proposed dataset:
• N+C+: Videos are captured in strong sunlight during

rush hours, with multiple people attempting to enter/exit
the bus at once.

• N+C−: Videos recorded in sharp sunlight during normal
hours where people are entering/exiting bus doors in a
more sequential manner.

• N−C+: The recording is performed with mild sunlight
but in crowded situations.

• N−C−: The recording is done in mild/diffused sunlight
with sequential entry/exit of people through the doors.

Tab. I summarizes the number of people entering and exiting
the bus doors for each sub-category. We manually computed
these numbers using the following strategy. Each video was
watched by at least two viewers who independently counted
the number of people entering and disembarking. In the case
of mismatch in the counts, the procedure was repeated until
all the viewers agreed to the same number.

TABLE II

VIDEO ATTRIBUTES

B. Video Information

In Tab. II, we summarize the basic attributes of the videos
in our dataset. We note that, these video attributes along the
camera parameter details are also provided in each folder of
the dataset. Moreover, the total number of people passing
through the doors is also provided as the ground truth. We also
provide RGB videos along the depth videos that can be used
for verification purposes. However, we emphasize that the
depth modality is more useful for the problem of people
counting in the real-world conditions because of its robustness
to e.g, illumination conditions and shadows.

IV. PROPOSED APPROACH

The schematics of the proposed approach for people count-
ing is illustrated in Fig. 1. Our method performs counting
by analyzing the depth video frames retrieved from the
RGB-D camera. The major steps involved in our approach
are; 1) removing the scene background, 2) re-projecting point
cloud onto the ground plane, 3) generating candidate head
proposals in the projected images, 4) refining those proposals,
and 5) tracking the trajectories of human heads for counting.
We provide details of each of these steps below.

A. Background Removal

There are multiple techniques for background subtraction
from RGB videos [13], [59], [60]. However, depth videos are
inherently different from RGB videos and such methods are
not readily applicable to them. Few methods for background
removal from depth videos also exist [61], [62]. However,
those techniques are generally computationally expensive,
which makes them unsuitable for our real-time application.
Moreover, such methods were also found to be unsuitable
for handling the noise in PCDS resulting from the real-world
conditions. Therefore, we develop our own method for efficient
background subtraction from depth videos for people counting
scenarios, such that the results also remain robust to noise in
the real-world data.

In our settings, a depth frame ID ∈ R
H×W is a matrix,

with its each element representing the distance of a point in
the real-world to the camera sensor. For a camera mounted on
top of the area to be monitored (as in PCDS), one can expect
that the farthest points in the scene would generally belong to
the background. Based on this simple intuition, we develop a
‘farthest background model’ BI ∈ R

H×W of dynamic scenes
that enables automatic estimation of the background on-the-
fly. A major advantage of such an approach is that it can be
readily used for any scene without the need of calibration for
the background.

We compute BI as a map of the largest distances appearing
in the sequences of depth frames, while accounting for the
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possible noise accumulation. To ensure that effective BI is
available for each video frame, we take the help of two
intermediate models Bc and B2c, where ‘c’ stands for cache.
We initialize BI and Bc with ID at the start of the video
stream (B2c is initialized later, see below). For an input frame
sequence, we update Bc at every frame as follows:

Bt
c = max{I t

D, Bt−1
c }, (1)

where the superscript ‘t’ denotes the current frame and t − 1
indicates the previous frame. The max{.} operation is per-
formed element-wise. After every nc frames, we update BI

by assigning it the values of Bc.
It is easy to see that under the above mentioned strategy, any

large distance values in Bc resulting from noise at any stage
can eventually get stored in BI . To cater for this problem,
we separately initialize B2c with ID just after BI is updated
(i.e. after nc frames), and keep updating it with every frame
as follows:

Bt
2c = max{I t

D, Bt−1
2c }. (2)

We update Bc as well as BI with B2c after each n2c, whereas
we impose that n2c − nc �= 0 to ensure that the update of BI

under Bc and B2c is asynchronous. This strategy entails that
a maximum value once entered in BI as a result of noise can
be replaced by the correct smaller value in the later frames.
For computational purpose, we also constrain n2c > 2nc. As a
result of the asynchronous updates with intermediate models,
effective BI remains available for each frame. We use this
farthest background model to extract the foreground IF at each
frame as follows:

I t
F (u, v) =

{
0, |Bt

I (u, v)− I t
D(u, v)| < δdis

I t
D(u, v), otherwise

(3)

where Bt
I (u, v) is the pixel value at (u, v) position of Bt

I ,
I t

D(u, v) is the pixel value at (u, v) position of I t
D , and δdis

denotes the threshold parameter for our approach.

B. Reprojection

Generally, cameras used for counting people are installed
with non-zero pitch angle, e.g. see ‘Camera Calibration’
in Fig. 1. The camera perspective often causes occlusion
and overlap in the depth maps of people, which adds to the
complexity of counting problem. The objective of “reprojec-
tion” stage is to remove the perspective distortions so that
individuals become well separated in the reprojected depth
frames. For that purpose, we first construct a 3D point cloud
from a depth frame of the camera and then re-project it
normally onto the ground plane to obtain a normalized depth
image. We present details of the reprojection procedure below.

First, we convert the foreground image IF into 3D points
in the camera coordinates. For every pixel in IF , we recover
its 3D point as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

XC = u − cx

fx
· IF (u, v)

YC = v − cy

fy
· IF (u, v)

ZC = IF (u, v),

(4)

where ( fx , fy) denote the camera focal length, (cx , cy) is
the camera principal point, IF (u, v) is the pixel value at the
position (u, v) in IF , and XC , YC , ZC are the recovered 3D
point coordinates.

For projecting points onto the ground, we must first
convert 3D points in the camera coordinates to the world
coordinates. Let us denote the world coordinate frame by
{XW , YW , ZW , OW }. We fix this frame directly below the cam-
era coordinate reference frame, as shown in Fig. 1. To perform
the transformation between the coordinate frames, we compute
the homogeneous transformation matrix (T ∈ R

4×4) based on
the extrinsic parameters of the camera. To that end, we first
identify N points in a depth frame acquired by the camera and
physically measure the corresponding points in the world coor-
dinates. The following optimization problem is then solved
using the least squares approach [63]:

< T >= min
T
||PW − T PC ||2F , (5)

where PW ∈ R
4×N contains N points arranged as its columns

in the world coordinates, and PC ∈ R
4×N contains the

corresponding points in the camera coordinates. The last
row of these matrices consist of 1s. For a unique solution,
we constrain N > 4 in our measurements.

Note that, estimation of T is an off-line process in our
approach and it is performed only once for calibration. Using
the matrix T we eventually transform all points in IF to a 3D
point cloud in the word coordinates. We then project this point
cloud normally onto the ground plane. Intuitively, multiple
points in the 3D point cloud can be mapped to the same
point on 2D ground plane. In our approach, we only store
the 2D mappings of the highest points in the 3D point cloud.
Concretely, for the points (X (i)

W , Y (i)
W , Z (i)

W ),∀i in the 3D point
cloud, we compute a 2D ground plane projection IH (x, y) as
follows: {

Z(x,y) = {Z (i)
W |X (i)

W = x ∧ Y (i)
W = y,∀i}

IH (x, y) = max(Z(x,y))
(6)

where (x, y) indexes points in the 2D plane. Henceforth,
we refer to IH as the “height image” because each point/pixel
in this image represents the highest point in the corresponding
3D point cloud. The effects of reprojection can be understood
as acquiring the depth image from a camera mounted directly
above a person as opposed to a tilted camera. In the illustra-
tions to follow, e.g. Fig. 4; the top-view of the height images
results from the performed reprojection.

C. Candidate Head Proposals
Although the reprojected height images separate individuals

well, the loss of information due to occlusions in the original
depth frames can not be recovered from these images. Due to
their height, human heads suffer the least from the occlusions
caused by the camera perspective. Therefore, instead of track-
ing the complete human body to count people, we focus on
reliable localization of human heads in the height images and
eventually use head trajectories for people counting.

To locate human heads in the reprojected images, we exploit
our prior knowledge about a human body. We make use of
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TABLE III

THRESHOLDS OF EACH PART OF HUMAN MODEL

Fig. 4. Intermediate results for generating head proposals. a) Down sampled
height image. b) Local maximum point in original height image. c) Expanding
local maximum points. d) Filtering the local maximum areas. The images are
cropped for better visualization.

a 3D human model, by dividing the body into three major
parts, namely; Head, Shoulders, and Lower body. We place
a cuboid on each of these parts that represents the volume
where the body part is most likely to be located in the 3D
space. For instance, we expect the head to be located in
the cuboid of dimensions Wh , Hh, Lh . The exact dimensions
of the cuboid would vary from person to person. Therefore,
we empirically place minimum and maximum thresholds on
these dimensions in our approach. The used thresholds are
summarized in Tab. III. Our intuition is that we can locate the
corresponding body parts of individuals in the height image
using the human model. Therefore, the thresholds in the table
cover reasonably large ranges to account for the variability in
human sizes in height images.

With the help of underlying human model, we generate
candidate proposals about the human heads possibly present
in the height image by sequentially performing the following
steps. 1) Down sampling the height image, 2) computing the
local maxima in the down sampled image, 3) expanding the
local maximum points, and 4) filtering the expanded areas.
Below, we describe each of these steps in detail.

1) Down Sampling: Recall that our aim is to develop a real-
time method that can deal with the real-world noise. To reduce
computations and mitigate the adverse effects of noise in this
step, we first down sample the height image IH by averaging
its wb×wb dimensional disjoint patches. As a result, we get an
image IB with its pixel at (x, y) location computed as follows:

IB(x, y) =

wb x+wb∑
u=wb x

wb y+wb∑
v=wb y

IH (u, v)

w2
b

, (7)

where, (u, v) denotes a pixel location in IH .
2) Local Maximum Point Computation: Intuitively, the pix-

els corresponding to human heads are more likely to have
the largest values in height images. This property is also
well preserved in the down sampled image IB , as can be
seen in Fig. 4a. Thus, to locate the areas that can potentially
belong to human heads in IB , we adopt a simple strategy

Algorithm 1 Ex pandingLocal Maximum Points
Input:

IH : height image. CH : local maximum point set.
δh : expanding threshold. Wmax : maximum head width.
Lmax : maximum head length.

Output:
E H : the set of expanded rectangles.

Initialize:
H ← rows(IH ); % height of the image.
W ← columns(IH ); % width of the image.

1: for each pixel (x0, y0) ∈ CH do
2: l ← W ; r ← 0; t ← H ; b← 0;
3: C0 ← {(x0, y0)}; Cs ← ∅;
4: for each pixel (u, v) ∈ C0 do
5: NP is 8-connected pixels of (u, v)
6: for each pixel (x, y) ∈ NP do
7: if (x, y) /∈ Cs and |IH (x0, y0)− IH (x, y)| ≤ δh

and r − l ≤ Wmax and b − t ≤ Lmax then
8: l ← min(x, l); r ← max(x, r);
9: t ← min(y, t); b← max(y, b);

10: Cs ← Cs ∪ {(x, y)}
11: C0← C0 ∪ {(x, y)}
12: end if
13: end for
14: C0 ← C0 − {(u, v)}
15: end for
16: E H ← E H ∪ {(l, r, t, b)}
17: end for
18: return E H

of identifying a set Cb of the pixels in IB that contain the
maximum values in their 8-connected pixels. These pixels
are then used to identify the local maximum points in the
original height image. Note that, the i th element of Cb, i.e. Ci

b is
computed as the mean of a set of pixels in the height image.
We represent the set of the desired maximum pixels in IH

as CH , and compute the j th element of that set, i.e. C j
H as

follows:

C j
H = max{pixels in IH corresponding to Ci

b}. (8)

As a result of this operation, we are able to efficiently
identify the local maximum points in our height image. Fig. 4b
illustrates the computed points from the corresponding down
sampled image in Fig. 4a.

3) Expanding Local Maximum Points: A local maximum
point in IH may or may not belong to a human head.
Therefore, we must analyze the local vicinity of the maximum
point and compare it with our human model to ascertain that
the point is indeed located on a human head. We adapt the
seed fill method [64] to expand the local maximum points
into rectangles such that the object bounded by each rectangle
can be compared with the human model. The procedure for
expanding the local maximum point is given as Algorithm 1.

Along the height image IH and the set of local maximum
points CH , the algorithm requires the maximum allowable
height and width of a head (from Tab. III) as the input. It also
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uses an expanding threshold δh as an input parameter, that
restricts the expanded rectangles to contain object pixels with
similar values. The algorithm eventually results in a set EH

that contains the expanded rectangles as its elements. The main
iteration of Algorithm 1 runs over each element of CH , that
are called seeds in the context of seed fill method [64]. For
each local maximum pixel, l, r, t and b respectively denote the
left, right, top and bottom of the expanded rectangle. On line 2
of the algorithm, these values are initialized with W, 0, H, 0.
On line 3, C0 records all the pixels that need to be considered
in the inner loop, whereas CS stores all the pixels which have
been processed. CS is initialized as ∅. The first inner ‘for loop’
(lines 4-15 in the algorithm) performs the actual expansion
process. It first identifies the 8-connected neighborhood of
a considered pixel (line 5) and then iterates over each of
the neighboring pixels (line 6-13) to evaluate the condition
given on line 7 of the algorithm. If the condition is satisfied,
the l, r, t, b values are updated and this pixel is added into Cs

and C0. The algorithm gradually expands a seed in CH to a
rectangle that is upper-bounded by the maximum dimensions
Wmax and Lmax while ensuring that the pixel values in the
expanded rectangles remain close to the seed value so that the
rectangle only bounds a single object.

4) Filtering Local Maximum Areas: Despite capitalizing
on the physical attributes of human body parts, we can still
expect that few rectangles in E H may not actually belong to
human heads (see e.g. Fig. 4c). Therefore, we further filter the
computed rectangles using the human model. In the filtration
process, we also consider incomplete human heads resulting
from occlusions. To filter, we discard all the rectangles in E H

that do not satisfy the following condition:⎧⎪⎨⎪⎩
Lmin

2
≤ L ≤ Lmax

Wmin

2
≤ W ≤ Wmax ,

(9)

where, L and W represent the length and width of a rectangle
and the subscripts min, max denote the minimum and max-
imum lengths allowed in Tab. III for ‘Head’. Notice that we
reduced the minimum allowed values in Eq. (9) by half. This
is done to account for occlusions that can often cause the size
of a head in our height image IH to reduce significantly.

D. Head Proposals Refinement
For the cameras installed on top of pathways, human heads

in video frames rarely overlap in real scenes, as can be
observed in Fig. 5a-b. However, the set E H may contain
few overlapping rectangles (see Fig. 5c), therefore we can
further refine this set by discarding the overlapping rectangles.
To do that, we consider all the groups of overlapped rectangles
in E H , and for each group, we store only the rectangle with
the highest seed value and discard the remaining rectangles.
We denote the refined set of rectangles by F H . Fig. 5d
illustrates the result of this refinement.

The rectangles contained in the set F H are highly likely
to correspond to human heads in IH , however it is still
possible that some of those rectangles may actually belong
to other objects in the scene. Differentiating between a head

Fig. 5. Result of removing overlapped rectangles: a) color image, b) depth
video frame, c) expanded local maximum areas, and d) result of removing
overlapped rectangles. The region of interest in height images is cropped and
expanded for better visualization.

and a non-head rectangle in F H is a non-trivial task because
occlusions and other factors, e.g. presence of high round-
shaped objects like bag-backs, can result in patterns in IH

that are very similar to human heads. We hypothesize that
despite their close similarity with the human heads, the non-
head objects can be automatically identified by analyzing their
relevant features. Hence, we design a compound discriminative
feature that accounts for different relevant attributes of objects
to classify them as ‘heads’ and ‘non-heads’. We momentarily
defer the discussion on the proposed feature to the text to
follow. We extract the proposed features for the elements of
F H and train an SVM classifier over those features to further
discard the rectangles that bound non-head objects.

For the SVM training, we manually label each extracted
feature for a rectangle as ‘head’ or ‘non-head’. This off-line
training is carried out only once in our approach on the training
data. For the test frames, we similarly extract the features of
head proposals and classify them as ‘heads’ or ‘non-heads’
using the trained SVM. The ‘non-heads’ are discarded in
further processing. Our proposed compound feature vector is
a concatenation of two major types of features that we call
Basic Geometric Features (BGF) and the Nearest Rectangle
Difference Feature (NRDF). The BGF itself is a combination
of four different features explained below:
• Shape Feature (Hr , Wr , R, P), where Hr is the height of

a rectangle, Wr is the width of the rectangle, R is the
ratio of Wr to Hr and, P = Hr × Wr .

• Symmetry Feature (SH , SV ), where SH captures the hori-
zontal symmetry and SV represents the vertical symmetry.
We define SH and SV as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

SH =
2

t+Hr∑
y=t

l+Wr
2∑

x=l
|IH (x, y)− IH (2l +Wr − x, y)|

Hr Wr

SV =
2

l+Wr∑
x=l

t+ Hr
2∑

y=t
|IH (x, y)− IH (x, 2t + Hr − y)|

Hr Wr
(10)

where, (l, t) denotes the top-left corner point of the
rectangle. Inclusion of this feature in our compound
feature is motivated by the natural symmetry of human
heads.
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Fig. 6. Illustration of NRDF feature. a) The height image. b) The
corresponding color video frame. There is a bag rectangle (yellow) in both
images, whose nearest rectangle is the head (red). The yellow arrow is the
NRDF feature of the bag rectangle and the red arrow is the NRDF feature of
the head rectangle.

• Zero Pixel Feature (N0, R0), where N0 denotes the num-
ber of zero pixels appearing in the image area bounded
by a rectangle, and R0 = N0

Hr Wr
is the rate of zero pixel

appearance.
• Expansion Ratio Feature � ∈ R

5 contains the ratios of
the area of a rectangle in F H to five different rectangles
achieved by using different expansion thresholds δh in
Algorithm 1. By varying the values of the expansion
threshold we can expect different rectangles resulting
for different kinds of objects in the scene. Therefore,
the expansion ratio feature provides important clues about
an object being a head or not. In our original algorithm,
we let δh = 15 to arrive at the set E H . To compute the
expansion ratio feature, we select the values of δh from
{20, 25, 30, 35, 40} to generate five different rectangles
corresponding to each element of F H and calculate �
for each element.

We concatenate the above mentioned four geometric features
into a vector in R

13. Notice that, although we do consider
varied areas of IH in the above mentioned features, the com-
pound feature only accounts for the information that is local to
individual rectangles. In the real-world scenarios, the relative
locations of the rectangles (that we suspect to contain human
heads) can provide useful information about a bounded object
being a human head or not. Therefore, we further define NRDF
to account for this additional information. For each rectangle
in F H , we compute NRDF as a vector in the 3D-space that
is directed towards the center of the rectangle from the center
of its nearest rectangle in our current set of head proposals.
This feature is further illustrated in Fig. 6. The resulting
NRDF ∈ R

3 is concatenated with the above mentioned feature
vector to finally arrive at our compound feature vector in R

16.

E. Tracking and Counting
Using the compound features introduced above, we refine

the head proposals in F H . Notice that, this set is computed
for a single depth frame in our approach. To eventually
count the people passing through a scene, we must also
track the trajectory of individual heads (i.e. people) in a
continuous video stream. For that purpose, we exploit F H

in maintaining a record of head trajectories in the incoming
video stream. We count the number of people passing by the
camera by counting the number of trajectories disappearing in

our records. We use the direction of movement to determine
if the person has entered or exited the bus. Concrete technical
details of this procedure are provided below.

To track individuals in the scene, we maintain a set of
trajectories T for the continuous video stream. The set is
initialized as ‘empty’ when the stream starts. With each frame
the set gets updated by adding, removing or updating its
elements. An element of this set is given by {F i

H , Pi }, where
‘i ’ indicates the i th element, and Pi is the probability of that
element bounding a human head. This probability is available
to us from the SVM classifier trained to arrive at the refined
set F H . In the text to follow, we refer to an element of T as
a node for brevity.

To update nodes with each coming frame, we first match the
potential nodes of the new frame with the current nodes in T .
To that end, we compute η = ||(xo−xn), (yo−yn), (so−sn)||2,
where (xo, yo) indicates the center of the rectangle represented
by a node in T , (xn, yn) is the center of a rectangle in the new
frame, and so and sn are the seed values for the respective
rectangles. We consider two nodes to be matched if η < δm ,
where we empirically fix the value of δm . If a new node does
not match any existing node, it is added to T as a new element.
If an existing node in T is not updated for Q consecutive
frames, we remove that node from our set. The removed
node increments our count of a person passing by the camera.
When a node is removed, we determine the direction of the
movement performed by the individual (i.e. ‘enter’ or ‘exit’)
by analyzing the centers of the first and the last rectangle for
that node. The information on the centers of rectangles (and
their seeds), number of updates for each node, and the time
stamp of the last update for each node are maintained in our
approach by book-keeping.

Using the simple strategy explained above, we can track
the trajectories of individual objects in the scene. However,
tracking of ‘human-heads’ in the above method completely
relies on the accuracy of F H . If a non-head object still eludes
our refinement process discussed in the preceding Section,
the approach may count extra individuals in the scene. To cir-
cumvent this problem we exploit the observation that human-
heads generally follow similar trajectories in path-ways, which
can be differentiated from the trajectories of non-head objects.
Thus, we train binary SVM classifiers (one each for ‘entering’
and ‘exiting’ directions) to identify a given trajectory in T as
‘head’ or ‘non-head’. We propose another feature for training
the classifiers that is formed by concatenating a) the mean
and variance of all nodes involved in a trajectory, b) the
total number of updates for the trajectory, c) velocity of
the trajectory computed as the rate of change in the center
locations of the bounding rectangles, and d) the difference
between the maximum and the minimum seed values for the
trajectory. We use the SVMs trained over these features to
refine our final count of the people entering or exiting the bus
doors/path-ways. We provide an illustration of tracking and
counting process in Fig. 7.

V. EXPERIMENT

We evaluate the proposed method using our proposed
dataset, PCDS, that contains a large number of pedestrians
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Fig. 7. Illustration of tracking and counting process. (a) Yellow rectangle
represents the head detected in the previous frame, and yellow dots indicate a
node of T . Black rectangle is the head detected in the current frame. (b) The
features of the node removed from T are extracted and input to SVM to label
as head or none-head.

Fig. 8. Background subtraction. Images are cropped for better visualization.

entering/exiting bus doors imaged by a Kinect camera installed
on top of the door. The dataset provides the opportunity to
thoroughly evaluate the major components of our approach
individually as well as analyze its performance for the over-
all task of people counting. We first analyze the efficacy
of our background subtraction procedure and compare its
performance with the popular MOG [60] and KNN-based
methods [65]. Then, we separately analyze the performance of
our method for the tasks of human head identification, human
head tracking and finally, people counting as a whole.

A. Background Removal
Background removal is a major task in many surveil-

lance related problems. For our approach, reliable back-
ground subtraction is necessary for the success of subsequent
processing of video frames. Therefore, we separately ana-
lyze the performance of our method for this task. We use
the popular Gaussian mixture-based background segmentation
method (MOG) [60] and the K-nearest neighbors (KNN) based
method [65] to benchmark our technique. We note that other
approaches for background subtraction also exist, however the
selected baseline methods are chosen for their well-established
effectiveness for the depth videos. We carefully optimized
parameter values of the baseline methods on our dataset using
cross validation. For the proposed method, we empirically
chose nc = 150 and n2c = 500 in all our experiments.

Fig. 8 shows a typical mask image generated by MOG [60],
KNN-based method [65], and the proposed background sub-
traction procedure. As can be seen, the mask images generated
by both KNN and MOG methods contain significant amount of
noise which can be detrimental for the subsequent processing
in our approach. On the other hand, the proposed method
is able to preserve the masks of individual humans very
well, with negligible noise. For further qualitative analysis of
background subtraction, we also provide videos comparing our

Fig. 9. Computational time for background subtraction for each frame.
Timings for a sequence of 2,263 frames are shown.

TABLE IV

SUMMARY OF THE LABELED HEAD PROPOSALS USED

method with the existing approaches on the following URL:
https://youtu.be/oiuYq_Pfx6c.

Whereas our method achieves reliable background subtrac-
tion, it is also required to obtain those results efficiently for
the overall task of real-time people counting. We show the
computational time (in ms) for processing each frame of a typ-
ical frame sequence in our dataset for the proposed approach
and the baseline methods in Fig 9. The time is computed on
a 1.7GHz processor with 2GB RAM for the task of back-
ground subtraction. The proposed method averages around
1.0 ms/frame in comparison to 2.1 ms/frame and 4.5 ms/frame
of MOG and KNN-based method respectively. High quality
background subtraction with a small time required to process
each frame makes our background subtraction highly desirable
for the broader problem of real-time people counting.

B. Human Head Identification
An essential component of counting people in our approach

is to accurately identify human heads in the scene. We identify
human heads by first generating candidate head proposals and
then refining them. In our approach, the process of generating
the candidate proposals is intentionally kept relaxed, and it also
results in identifying multiple non-head objects in the scene
(e.g. shoulders, bag-packs) to be considered as potential human
heads. The refinement process (in Sec. IV-D) then discards the
non-head objects to identify the human heads.

To analyze the performance of our method for human
head identification, we first manually labeled 12,148 rectangle
proposals in height images for people entering the buses
as ‘heads’ and ‘non-heads’. These proposals were generated
automatically by the method in Sec. IV-C. We then trained
and tested the SVM classifier employed in our approach using
these proposals. We also performed the same routine for
10,108 candidate head proposals for the people exiting the
buses. The details of the train-test distributions and the labels
of proposals used in this analysis are provided in Tab. IV.
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Fig. 10. The ROC curves of classifiers for head identification. a) People
entering the buses: SVM parameters γ = 20.2 and C = 16. b) People exiting
the buses: SVM parameters γ = 3.4 and C = 520.

TABLE V

EVALUATION OF HEAD IDENTIFICATION

In Fig. 10, we show the ROC curves for the classifiers trained
for the refinement of head proposals. The curves show results
of our three-fold experiments, with corresponding AUC values.

From Fig. 10, we can argue that the employed classifiers
are able to identify human heads in the proposals successfully.
We note that the classification performance depicted by Fig. 10
is better for the people exiting buses than for the people enter-
ing buses. The reason behind this phenomenon is that while
providing the ground truth we only labeled those proposal
rectangles as ‘heads’ that bounded complete human heads.
For the case of people entering the buses, many half-heads
appeared in the frames due to queuing of people on bus doors.
On scrutiny, we found that most of those heads resulted in false
positive identifications in our experiment. However, this is not
problematic for the overall approach because the final results
rely more strongly on tracking of heads on multiple frames,
and the half-heads eventually transform into complete heads
in the subsequent video frames. We also provide the details of
precision, recall and the f1-scores for our head identification
experiment in Tab. V.

C. Tracking

Our overall approach relies strongly on the tracking method
introduced in Sec. IV-E. Similar to the head identification
method, we separately analyzed the tracking procedure by
evaluating the performance of the classifier employed for
tracking. For that, we manually labeled 1,332 tracks in our
dataset as ‘head’ and ‘non-head’ for people entering the buses.
Among the labeled tracks, we used around 30% samples for
testing and the remaining samples were used for training the
classifier. We also followed the same routine for 1,330 tracks
for people exiting the buses. The information on the test-train
distribution and the labels of the tracks used in our analysis
is summarized in Tab. VI. We empirically selected δm = 15
and Q = 8 in our experiments.

TABLE VI

SUMMARY OF THE LABELED TRACKS USED

Fig. 11. The ROC curve of classifiers for tracking head trajectories. a) People
entering the buses: SVM parameters γ = 0.111 and C = 368. b) People
exiting the buses: SVM parameters γ = 0.05882 and C = 896.

TABLE VII

EVALUATION OF TRACKING PERFORMANCE

In Fig. 11, we show the ROC curves of the classifiers used
for head tracking in our approach. The figure also reports
the AUC values for our three-fold experiments. It is easy to
observe that our method is able to classify (i.e. track) the
trajectories of human heads very accurately for both ‘entering’
and ‘exiting’ scenarios. Notice that no significant performance
degradation is visible in Fig. 11a for the ‘entering’ scenario,
which was the case in Fig. 10a. This is because tracking
is performed over a sequence of frames and the incomplete
heads (due to people queues) at the start of tracking eventually
become irrelevant for the problem at hands. We also provide
summary of the precision, recall and f1-scores of the tracking
results in Tab. VII. The table indicates successful classification
by the employed classifier.

D. People Counting

The main objective of our approach is to perform people
counting in real-time. We evaluated the people counting per-
formance of our approach using 2,000 test videos from PCDS.
We used detection rate ‘�’ as the metric for evaluations, which
is defined as follows.

� =
NV∑
i=1

|ni − ñi |
/ NV∑

i=1

ni (11)

where NV is the total number of videos in the test data, ni is
the number of people passing in the i th video, and ñi denotes
the estimated number of people in the i th video.
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TABLE VIII

PEOPLE COUNTING ACCURACY ON PCDS

In Tab. VIII, we report the detection rates of our method for
the four different categories of videos introduced in Sec. III-A.
We separately report the results for the ‘entering’ and ‘exiting’
scenarios. Based on these results, we can argue that the
performance of our approach is acceptable for both scenarios.
In PCDS, most of the people entering the buses use the front
door. It was observed that due to significant glare from the
glass of the front doors, the videos often contained large
amount of noise. This generally made people counting at
the front doors in the dataset more challenging. Nevertheless,
the approach shows reasonable overall performance given the
practical real-world conditions of the dataset.

Considering the potential low on-board computational
capacity available for our method in the real-world deploy-
ment, we used a less powerful 1.7GHz Intel processor with
2GB RAM for evaluating our approach. On average, our
method required 1.1ms for background removal, 15.4ms for
head identification, and 5.6ms for track computation for a
single frame. This amounts to 22.1ms processing time for a
single frame, yielding processing of approximately 45 frames
per second, which can be considered as real-time performance.

VI. CONCLUSION

This article makes two important contributions to the prob-
lem of ‘people counting’ in real-world scenarios. Firstly,
it presents the first large-scale benchmark public dataset for the
problem. This dataset contains recorded depth videos, color
videos and CSV format files with the labels containing the
number of people passing through different scenes of bus
doors. The videos account for a large variability in scene
illumination, clutter, noise and other factors in the real-world
environment, which makes the dataset particularly challenging.
Secondly, the article presents a method for real-time people
counting in cluttered scenes and evaluates the performance
on the proposed dataset. The proposed method utilizes the
depth video stream and computes a normalized height image
of the scene after removing the background. The height image
is essentially a projection of the scene depth directly below
the camera, which helps in a clear segmentation of individual
objects in the scene. This projection is used to identify heads
of individuals in the scene. We utilize a 3D human model
and adapt a seed fill method to reliably detect human heads.
We also propose a compound feature for height images, that is
utilized in our approach for head identification. Once reliably
detected, individual human heads are tracked to compute their
trajectory which is eventually utilized for people counting.
We ascertain the effectiveness of our method by applying it
to the proposed dataset. Our benchmark dataset will play a
major role in advancing research in the areas of RGB-video,
Depth-video and RGBD-video based people counting.
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