In recent years, the academic papers published in the fields of intelligent transportation, machine vision and new energy integration are as follows:
[1] 邓有为, 李刚*, 辛怡, 等. 隧道围岩沉降自适应实时识别及测量[J]. 电子测量与仪器学报,2023, 37(2): 236.通讯作者
[2] 李雯雯, 李喜媛, 周健, 谢耀华, 李刚*. 基于全卷积神经网络和朴素贝叶斯数据融合的桥梁裂缝识别算法[J].公路交通科技,2023,40(2):44-52 https://doi.org/10.3969/j.issn.1002-0268.2023.02.007
[3] 何廷全,俞山川,张生鹏,兰栋超,李刚*,基于目标检测的驾驶人分神驾驶行为检测方法研究[J].公路交通科技,2022,39(10):153-161
[4] Shanchuan Yu, Yi Li, Zhaoze Xuan, Yishun Li, and Gang Li*,Real-Time Risk Assessment for Road Transportation of Hazardous Materials Based on GRU-DNN with Multimodal Feature Embedding[J]. Applied Sciences,2022,12(21):11130; https://doi.org/10.3390/app122111130
[5] Gang Li, Zhongyuan Fang, AL MAHBASHI, MOHAMMED, Tong Liu, Zhihao Deng, Automated bridge crack detection based on improving encoder-decoder network and stripe pooling[J]. Journal of Infrastructure Systems, 2023, 29(2): 04023004.
[6] Gang Li*, Tong Liu, Zhongyuan Fang, Qian Shen, Jawad Ali, Automatic bridge crack detection using boundary refinement based on real-time segmentation network[J]. Structural Control and Health Monitoring,2022:e2991.https://doi.org/10.1002/stc.2991
[7] QiHong Li, LingJia Liu, YongJun Zhou, Gang Li*, and Yu Zhao, Robust, accurate, and improved measurement of structural deformation based on off-axis digital image correlation[J].Applied Optics, 2022,61(1):1616-1623
[8] Xuan Zheng, Shuailong Zhang, Xue Li, Gang Li*, Lightweight Bridge Crack Detection Method Based on SegNet and Bottleneck Depth-Separable Convolution with Residuals[J]. IEEE Access, 2021,9(12):161649-161668
[9] 谢耀华,代玉,周欣,李刚*,基于双向特征金字塔和残差网络的危化品运输车辆检测,2022,31(1):218-225
[10] 李刚,陈永强,何廷全等,改进的多分支特征共享结构网络在路面裂缝检测中的应用[J].激光与光电子学进展,2022,59(12):1215005
[11] Gang Li, Yongqiang Chen, Jian Zhou, et al. Road crack detection and quantification based on segmentation network using architecture of matrix[J]. Engineering Computations, 2021,6:
[12] Gang Li, Dongchao Lan, et al. Automatic pavement crack detection based on single stage salient-instance segmentation and concatenated feature pyramid network[J]. International Journal of Pavement Engineering, 2021,6:
[13] Gang Li, Xiyuan Li, Jian Zhou, et al. Pixel-level bridge crack detection using a deep fusion about recurrent residual convolution and context encoder network[J]. Measurement, 2021,176(5):109171.
[14] Wenting Qiao, Qiangwei Liu, Xiaoguang Wu, Biao Ma, Gang Li*. Automatic Pixel-Level Pavement Crack Recognition Using a Deep Feature Aggregation Segmentation Network with a scSE Attention Mechanism Module[J]. Sensors, 2021,21(9), 2902. 通讯作者
[15] Wenting Qiao, Biao Ma, Qiangwei Liu, Xiaoguang Wu, Gang Li*. Computer Vision-based Bridge Damage Detection using Deep Convolutional Networks with Expectation Maximum Attention Module[J]. Sensors, 2021, 21(3), 824. 通讯作者
[16] Gang Li, Qiangwei Liu, Wei Ren, et al. Automatic recognition and analysis system of asphalt pavement cracks using interleaved low-rank group convolution hybrid deep network and SegNet fusing dense condition random field[J]. Measurement, 2021,170(1):108693
[17] Gang Li, Xueli Ren, Wenting Qiao, et al.Automatic bridge crack identification from concrete surface using ResNeXt with postprocessing[J]. Structural Control and Health Monitoring, 2020,27(11):1-20. SCI检索
[18] Gang Li, Jian Wan, Shuanhai He, et al. Semi-Supervised Semantic Segmentation Using Adversarial Learning for Pavement Crack Detection[J]. IEEE Access,2020, 8(3):51446-51459.
[19] Gang Li, Biao Ma, Shuanhai He, et al.Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique[J]. Sensors,2020,20(3):1-23.
[20] Gang Li, Qiangwei Liu, et al. Automatic crack recognition for concrete bridges by fully convolutional neural network and Naive Bayes data fusion based on visual detection system[J]. Measurement Science and Technology, 2020, 27(4):1-17. SCI二区检索:000532330500001
[21] Gang Li, Chao Wang, Depeng Han, et al.Deep Principal Correlated Auto-Encoders with Application to Imaging and Genomics Data Integration[J]. IEEE Access, 2020,8(1):20093 – 20107.
[22] Gang Li, Depeng Han, Chao Wang, et al. Application of deep canonically correlated sparse autoencoder for the classification of schizophrenia[J]. Computer Methods and Programs in Biomedicine, 2020, 183(1): 1-9.SCI一区检索:000498062700005
[23] 李刚,高振阳等,改进的全局卷积网络在路面裂缝检测中的应用研究[J].激光与光电子学进展,2020,57(8):081011
[24] 李刚,刘强伟等,复杂背景下交错低秩组卷积混合深度网络的路面裂缝检测算法研究[J],激光与光电子学进展,2020,57(14):141031-141038
[25] 李刚,张宇博等,改进的卷积网络目标跟踪算法[J]. 计算机应用研究,2020,37(7):2206-2210
[26] 李刚,韩德鹏,刘强伟等,基于典型相关稀疏自编码器的精神分裂症分类研究[J]. 中国医学物理学杂志,2020,3(3):391-396.
[27] 李刚,王超,韩德鹏等,基于深度主成分相关自编码器的多模态影像遗传数据研究[J]. 计算机科学,2020,4(4):60-66.
[28] Gang Li, Xiaoxing Zhao, Kai Du, et al. Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine[J]. Automation in Construction, 2017, 78(6):51-61.(SCI一区检索:000397353900005)
[29] Gang Li, Shuanhai He, Yongfeng Ju, et al. Long-distance precision inspection method for bridge cracks with image processing[J]. Automation in Construction,2014,41(5):89-95.(SCI一区检索:000334139500010)
[30] 李刚,贺拴海,巨永锋等,远距离混凝土桥梁结构表面裂缝精确提取算法[J].中国公路学报,2013,4(7):1-8.(EI检索:20133516679465)
[31] 李刚,贺拴海,杜凯等. 桥梁下部结构裂缝提取的改进C-V模型算法[J]. 交通运输工程学报,2012,12(4):9-16.(EI检索:20124315604048)
[32] Li Gang, He ShuanHai, Ju YongFeng, et al.. Image-Based Method for Concrete Bridge Crack Detection[J].Journal of Information & Computational Science,2013,10(8):2229-2236.(EI检索:2013251642907)
[33] Li Gang,Ju Yongfeng.Novel Approach to Pavement Cracking Detection Based on Morphology and Mutual Information[C], The 2010 Chinese Control and Decision Conference. Xuzhou,China,2010: 3219-3223.(EI检索:20103213139942)
[34] Gang Li.Improved Pavement Distress Detection Based on Contourlet Transform and Multi-direction Morphological Structuring Elements[C].Advanced Materials Research,2012,466-467:371-375,(EI检索:20121114858887)
[35] 李刚,贺昱曜,不均匀光照的路面裂缝识别和分类新方法[J].光子学报,2010,39 (8): 1405-1408
[36] 李刚,贺昱曜,赵妍,一种改进的多方位结构元素形态学和互信息量的图像分割算法[J].工程图学学报,2010,31(3):104-108
[37] 李刚,贺昱曜,多方位结构元素路面裂缝图像边缘识别算法[J].计算机工程与应用,2010,46(1):224-226
[38] 李刚,贺昱曜,赵妍,基于大津法和互信息量的路面破损图像自动识别算法[J].微电子学与计算机,2009,26(7):241-243
[39] 李刚,贺昱曜,赵妍,桥梁水下结构缺陷的图像分割与特征提取算法[J].计算机应用与软件,2010,27(4):80-82
[40] Li Gang, He ShuanHai, Ju YongFeng, Concrete Cracks Recognition Based on C-V Model and Mutual Information[J]. International Journal of Advancements in Computing Technology,2012,5(6): 415-423