刘维宇 教授

电子与控制工程学院

头像

学位: 工学博士

毕业院校: 西安交通大学

邮件: liuweiyu@chd.edu.cn

电话: 13572267012

出生年月: 1987-03-04

办公地点: 长安大学渭水校区工程训练中心

个人资料

  • 学院: 电子与控制工程学院
  • 性别:
  • 出生年月: 1987-03-04
  • 职称: 教授
  • 学位: 工学博士
  • 学历: 研究生
  • 毕业院校: 西安交通大学
  • 联系电话: 13572267012
  • 电子邮箱: liuweiyu@chd.edu.cn
  • 通讯地址:
  • 邮编: 710064
  • 传真:
  • 办公地址: 长安大学渭水校区工程训练中心
  • 教育经历:

    2005-09~2009-06 【中国】西安交通大学 本科生

    2009-09~2016-09 【中国】西安交通大学 硕博连读生


个人简介

  刘维宇,男,1987年3月生,陕西西安人。任职于长安大学电子与控制工程学院,教授,硕士生导师,电控学院学科建设责任教授。

  教学方面:第2主编编著普通高等教育卓越工程能力培养系列教材《基于ARM 的单片机应用及实践——GD32 案例式教学》1 部,主持完成建设研究生在线课程《机器学习》(在超星“学银在线”全国平台已上线)。主持一级学会教改项目1 项,以第1 作者发表教学论文1 篇。主讲《传感器与检测技术》《工程项目管理》两门必修课程。

  科研方面:已发表SCI 学术论文87 篇,总引用1919 次,H 指数26,i10 指数62,单篇最高影响因子29.4(ADV MATER)。其中,芯片实验室领域顶级期刊 ADV MATER 1 篇,NANO ENERGY 2 篇,LAB CHIP 10 篇(芯片实验室领域旗舰期刊),SMALL 2 篇,PHYS FLUIDS 6 篇。1 篇论文入选 LAB CHIP 封面文章,1 篇论文入选SMALL 封面文章,1 篇论文入选PHYS FLUIDS 期刊首页亮点论文,1 篇论文入选ESI 高被引。主持国家自然科学基金面上项目、青年项目,陕西省重点研发计划,陕西省自然科学基础研究计划等国家和省部级科研项目。第1 发明人授权软件著作权6 项,科技成果转让4 项。主持完成课题“非线性电动微流体力学及其微纳流控器件研究”获得陕西高等学校科学技术研究优秀成果奖一等奖(排名1/5)。







社会职务

2024~至今 Applied Sciences期刊特刊客座编辑

2019~至今 国家自然科学基金委数理科学部青年科学基金项目通讯评审专家

2024~至今 国家自然科学基金委信息科学部面上项目通讯评审专家

2024~至今 广东省科学技术厅科研项目通讯评审专家

2022~至今 教育部学位论文通讯评审专家

研究领域

在哈尔滨工业大学国家级人才任玉坤教授的带领下,围绕“电动微纳流控芯片”"自供能智能医疗穿戴"“微纳流控传感及检测”等方向展开了系列深入研究。

我们团队关于"芯片实验室(Lab on a chip)"研究发表的学术论文被国内外众多知名科学家,包括美国三院院士、中国科学院/工程院院士、诺贝尔奖获得者进行了广泛正面引用。






开授课程

本科生课程:

1.传感器与检测技术

2. 工程项目管理



科研项目

主持的科研项目:

1、国家自然科学基金面上项目, 61万元,2022-2025(国家级)

2、国家自然科学基金青年项目, 25万元,2018-2020(国家级)

3、陕西省自然科学基础研究计划青年项目,3万元,2019-2020(省部级)

4、中央高校基本科研业务费,15万元,2022-2024(校级)

5、中央高校基本科研业务费,8万元,2017-2018(校级)

6、陕西省重点研发计划-一般项目(工业领域),7万元,2022-2023(省部级)

7、企业横向课题,15万元,2023-2024 (横向)


主持的教改项目:

1、新工科背景下轨道交通自动化专业知行合一实践类人才培养模式改革与探索,中国交通教育研究会教育科学研究课题(省部级教改项目)

2、长安大学研究生教育教学改革专项1项(校级教改项目)

论文

已发表SCI学术论文88篇,引用1900次,H因子26,i10指数62。

曾经发表过的SCI检索期刊学术论文:

[1]A portable and integrated traveling-wave electroosmosis microfluidic pumping system driven by triboelectric nanogenerator. Nano Energy. 2024;127:109736.

[2]Image Deraining Algorithm Based on Multi-Scale Features. Applied Sciences. 2024;14:5548.

[3]A Liquid Metal Enabled Fluid Pumping in 3D Space. Advanced Functional Materials. 2024:2410349.

[4]Lithium Battery SoC Estimation Based on Improved Iterated Extended Kalman Filter. Applied Sciences. 2024;14:5868.

[5]Electrokinetic behavior of an individual liquid metal droplet in a rotating electric field. Physics of Fluids. 2024;36.

[6]Fast-M Adversarial Training Algorithm for Deep Neural Networks. Applied Sciences. 2024;14:4607.

[7]Ambient Moisture‐Driven Self‐Powered Iontophoresis Patch for Enhanced Transdermal Drug Delivery. Advanced Healthcare Materials. 2024:2401371.

[8]Path planning of rail-mounted logistics robots based on the improved dijkstra algorithm. Applied Sciences. 2023;13:9955.

[9]Numerical characterization of transient electrohydrodynamic deformation and coalescence of single-core double emulsion droplets by AC field dielectrophoresis. Chemical Engineering Science. 2023;277:118877.

[10]Developing an Active Microfluidic Pump and Mixer Driven by AC Field-Effect-Mediated Induced-Charge Electro-Osmosis of Metal–Dielectric Janus Micropillars: Physical Perspective and Simulation Analysis. Applied Sciences. 2023;13:8253.

[11]Portable general microfluidic device with complex electric field regulation functions for electrokinetic experiments. Lab on a Chip. 2023;23:157-67.

[12]Wireless and closed‐loop smart dressing for exudate management and on‐demand treatment of chronic wounds. Advanced Materials. 2023;35:2304005.

[13]Liquid metal droplet motion transferred from an alkaline solution by a robot arm. Lab on a Chip. 2022;22:4621-31.

[14]Numerical investigation of field‐effect control on hybrid electrokinetics for continuous and position‐tunable nanoparticle concentration in microfluidics. Electrophoresis. 2022;43:2074-92.

[15]Alternating-current nonlinear electrokinetics in microfluidic insulator-decorated bipolar electrochemistry. Physics of Fluids. 2022;34:112002.

[16]Numerical characterization of inter‐core coalescence by AC dielectrophoresis in double‐emulsion droplets. Electrophoresis. 2022;43:2141-55.

[17]Fluid pumping by liquid metal droplet utilizing ac electric field. Physical Review E. 2022;105:025102.

[18]Deep convolutional neural networks for regular texture recognition. PeerJ Computer Science. 2022;8:e869.

[19]A visual portable microfluidic experimental device with multiple electric field regulation functions. Lab on a Chip. 2022;22:1556-64.

[20]DC electric field-driven heartbeat phenomenon of gallium-based liquid metal on a floating electrode. Soft Matter. 2022;18:609-16.

[21]Desktop-level small automatic guided vehicle driven by a liquid metal droplet. Lab on a Chip. 2022;22:826-35.

[22]Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator. Nano Energy. 2021;89:106451.

[23]Small universal mechanical module driven by a liquid metal droplet. Lab on a Chip. 2021;21:2771-80.

[24]Continuous‐flow nanoparticle trapping driven by hybrid electrokinetics in microfluidics. Electrophoresis. 2021;42:939-49.

[25]Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full‐scaled simulation study considering surface‐coupled electrocapillary two‐phase flow. Electrophoresis. 2021;42:950-66.

[26]Efficient particle and droplet manipulation utilizing the combined thermal buoyancy convection and temperature-enhanced rotating induced-charge electroosmotic flow. Analytica Chimica Acta. 2020;1096:108-19.

[27]Continuous microfluidic mixing and the highly controlled nanoparticle synthesis using direct current-induced thermal buoyancy convection. Microfluidics and Nanofluidics. 2020;24:1-14.

[28]Pumping of Ionic Liquids by Liquid Metal‐Enabled Electrocapillary Flow under DC‐Biased AC Forcing. Advanced Materials Interfaces. 2020;7:2000345.

[29]Combined alternating current electrothermal and dielectrophoresis-induced tunable patterning to actuate on-chip microreactions and switching at a floating electrode. Sensors and Actuators B: Chemical. 2020;304:127397.

[30]Liquid metal droplet-enabled electrocapillary flow in biased alternating electric fields: a theoretical analysis from the perspective of induced-charge electrokinetics. Journal of Micromechanics and Microengineering. 2020;30:085007.

[31]A simulation analysis of nanofluidic ion current rectification using a metal-dielectric janus nanopore driven by induced-charge electrokinetic phenomena. Micromachines. 2020;11:542.

[32]On ion transport regulation with field‐effect nonlinear electroosmosis control in microfluidics embedding an ion‐selective medium. Electrophoresis. 2020;41:778-92.

[33]Multiple frequency electrothermal induced flow: theory and microfluidic applications. Journal of Physics D: Applied Physics. 2020;53:175304.

[34]Buoyancy-free janus microcylinders as mobile microelectrode arrays for continuous microfluidic biomolecule collection within a wide frequency range: A numerical simulation study. Micromachines. 2020;11:289.

[35]A novel fastslam framework based on 2d lidar for autonomous mobile robot. Electronics. 2020;9:695.

[36]Eccentric magnetic microcapsule for on-demand transportation, release, and evacuation in microfabrication fluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2020;599:124905.

[37]A numerical investigation of enhancing microfluidic heterogeneous immunoassay on bipolar electrodes driven by induced-charge electroosmosis in rotating electric fields. Micromachines. 2020;11:739.

[38]Efficient micro/nanoparticle concentration using direct current-induced thermal buoyancy convection for multiple liquid media. Analytical chemistry. 2019;91:4457-65.

[39]Continuous particle trapping, switching, and sorting utilizing a combination of dielectrophoresis and alternating current electrothermal flow. Analytical chemistry. 2019;91:5729-38.

[40]Experiment calibrated simulation modeling of crowding forces in high density crowd. IEEE Access. 2019;7:100162-73.

[41]Optimization of passenger transportation corridor mode supply structure in regional comprehensive transport considering economic equilibrium. Sustainability. 2019;11:1172.

[42]On hybrid electroosmotic kinetics for field‐effect‐reconfigurable nanoparticle trapping in a four‐terminal spiral microelectrode array. Electrophoresis. 2019;40:979-92.

[43]A microscopic physical description of electrothermal‐induced flow for control of ion current transport in microfluidics interfacing nanofluidics. Electrophoresis. 2019;40:2683-98.

[44]A novel temperature–hysteresis model for power battery of electric vehicles with an adaptive joint estimator on state of charge and power. Energies. 2019;12:3621.

[45]An Experimental Study of 3D Electrode-Facilitated Particle Traffic Flow-Focusing Driven by Induced-Charge Electroosmosis. Micromachines. 2019;10:135.

[46]A micro-needle induced strategy for preparation of monodisperse liquid metal droplets in glass capillary microfluidics. Microfluidics and Nanofluidics. 2019;23:1-9.

[47]Multifrequency induced-charge electroosmosis. Micromachines. 2019;10:447.

[48]Compound‐droplet‐pairs‐filled hydrogel microfiber for electric‐field‐induced selective release. Small. 2019;15:1903098.

[49]Effective joint DOA-DOD estimation for the coexistence of uncorrelated and coherent signals in massive multi-input multi-output array systems. EURASIP Journal on Advances in Signal Processing. 2018;2018:1-14.

[50]On developing field-effect-tunable nanofluidic ion diodes with bipolar, induced-charge electrokinetics. Micromachines. 2018;9:179.

[51]Flexible continuous particle beam switching via external-field-reconfigurable asymmetric induced-charge electroosmosis. Analytical chemistry. 2018;90:11376-84.

[52]Online road detection under a shadowy traffic image using a learning-based illumination-independent image. Symmetry. 2018;10:707.

[53]Flexible particle flow‐focusing in microchannel driven by droplet‐directed induced‐charge electroosmosis. Electrophoresis. 2018;39:597-607.

[54]Induced-charge electrokinetics in rotating electric fields: A linear asymptotic analysis. Physics of Fluids. 2018;30:062006.

[55]On ac-field-induced nonlinear electroosmosis next to the sharp corner-field-singularity of leaky dielectric blocks and its application in on-chip micro-mixing. Micromachines. 2018;9:102.

[56]On the bipolar dc flow field-effect-transistor for multifunctional sample handing in microfluidics: A theoretical analysis under the debye–huckel limit. Micromachines. 2018;9:82.

[57]Simulation analysis of rectifying microfluidic mixing with field‐effect‐tunable electrothermal induced flow. Electrophoresis. 2018;39:779-93.

[58]On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: Physical perspectives and theoretical analysis. Journal of Micromechanics and Microengineering. 2018;28:055004.

[59]Dielectrophoretic separation with a floating-electrode array embedded in microfabricated fluidic networks. Physics of Fluids. 2018;30:112003.

[60]Electrically controlled rapid release of actives encapsulated in double-emulsion droplets. Lab on a Chip. 2018;18:1121-9.

[61]A high-throughput electrokinetic micromixer via AC field-effect nonlinear electroosmosis control in 3D electrode configurations. Micromachines. 2018;9:432.

[62]Electric field-induced cutting of hydrogel microfibers with precise length control for micromotors and building blocks. ACS applied materials & interfaces. 2018;10:40228-37.

[63]A Simplified Microfluidic Device for Particle Separation with Two Consecutive Steps: Induced Charge Electro-osmotic Prefocusing and Dielectrophoretic Separation. Analytical chemistry. 2017.

[64]A universal design of field-effect-tunable microfluidic ion diode based on a gating cation-exchange nanoporous membrane. Physics of Fluids. 2017;29:112001.

[65]Controllable rotating behavior of individual dielectric microrod in a rotating electric field. Electrophoresis. 2017;38:1427-33.

[66]Control of two-phase flow in microfluidics using out-of-phase electroconvective streaming. Physics of Fluids. 2017;29:112002.

[67]Electrode cooling effect on out-of-phase electrothermal streaming in rotating electric fields. Micromachines. 2017;8:327.

[68]Continuously Electrotriggered Core Coalescence of Double-Emulsion Drops for Microreactions. ACS applied materials & interfaces. 2017.

[69]On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels. Electrophoresis. 2017;38:983-95.

[70]Sequential coalescence enabled two‐step microreactions in triple‐core doubleemulsion droplets triggered by an electric field. Small. 2017;13:1702188.

[71]Simulation analysis of improving microfluidic heterogeneous immunoassay using induced charge electroosmosis on a floating gate. Micromachines. 2017;8:212.

[72]Fluid flow and mixing induced by AC continuous electrowetting of liquid metal droplet. Micromachines. 2017;8:119.

[73]Continuously electrotriggered core coalescence of double-emulsion drops for microreactions. ACS applied materials & interfaces. 2017;9:12282-9.

[74]A simplified microfluidic device for particle separation with two consecutive steps: Induced charge electro-osmotic prefocusing and dielectrophoretic separation. Analytical chemistry. 2017;89:9583-92.

[75]Enhanced particle trapping performance of induced charge electroosmosis. Electrophoresis. 2016;37:1326-36.

[76]Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics. 2016;10:054103.

[77]Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip. 2016;16:2803-12.

[78]AC electric field induced dielectrophoretic assembly behavior of gold nanoparticles in a wide frequency range. Applied Surface Science. 2016;370:184-92.

[79]Effects of discrete-electrode arrangement on traveling-wave electroosmotic pumping. Journal of Micromechanics and Microengineering. 2016;26:095003.

[80]On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics. Biomicrofluidics. 2016;10:034105.

[81]Electrocoalescence of paired droplets encapsulated in double-emulsion drops. Lab on a Chip. 2016;16:4313-8.

[82]Induced-charge electroosmotic trapping of particles. Lab on a Chip. 2015;15:2181-91.

[83]Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole–dipole interactions. Soft matter. 2015;11:8105-12.

[84]One-dimensional Au–ZnO heteronanostructures for ultraviolet light detectors by a two-step dielectrophoretic assembly method. Acs Applied Materials & Interfaces. 2015;7:12713-8.

[85]Particle clustering during pearl chain formation in a conductive-island based dielectrophoretic assembly system. Rsc Advances. 2015;5:5523-32.

[86]A theoretical and numerical investigation of travelling wave induction microfluidic pumping in a temperature gradient. Journal of Physics D: Applied Physics. 2014;47:075501.

[87]Homogenization of a variational problem in three-dimension space. Applied Mathematics and Computation. 2014;232:261-71.

[88]Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system. Langmuir. 2013;29:12093-103.




 


基于ARM的单片机应用及实践——GD32案例式教学,机械工业出版社,排名2/2



科技成果

1. 《非线性电动微流体力学及其微纳流控器件研究》,2022年度陕西高校科学技术奖,一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。

2. 授权软件著作权10余项。

3. 科技成果转让4项。

荣誉奖励

1. 科技奖励:第1完成人获2022年度陕西高等学校科学技术奖一等奖,主要完成人:刘维宇、任玉坤、陶冶、李艳波、武奇生。

2. 2015-2018年度先进科研工作者,长安大学,2019.05

3.2019-2021年度先进科研工作者,长安大学,2022.04

4.“长安学者”一类青年学术骨干,长安大学,2021.06;

5. 学科建设责任教授,长安大学,2020.06。



工作经历

2016-09~2018-11 【中国】长安大学 讲师

2018-11~2023-12 【中国】长安大学 副教授

2019-12~至今 【中国】长安大学 硕士研究生导师

2023-12~至今 【中国】长安大学 教授